
-A1A24 758 A STD O F 0 THE SO F T RE MARINFENANCU PROCE SS 0F AI R J
FORCE WEAPON SYSTEMS(U) AI ORCE NS OF TECH
WRIOHT-PATTERSON AF B OH SHOOL 0F ENGINEERINO

UNCASS ES P 0 C2 S ME N E
. O N N

mhEohEoiimEEE
smhhEEEEohmhh
EEmhEmhmhhEmhE
EohEmhhhhhEmhE
mEmhEmhEEEEmhI

1111112.0

1111.25 1I~* ff .

MICROCOPY RESOLUTION TEST CHART

NATIONAL. BUREAU OF STANDARDb-1963-A

ra aimmet has aenopro DT
I o pzli olaeand sale; 12 ELE

dSt=4hils unlimited E8S :.
DEPARTMENT OF THE AIR FORCE ~

AIR UNIVEITY (ATC)

AIR FORCE INSTITUTE Of TECHNOLOGY

Wrigpht-Pattorson Air Force Base, Ohio

02 022 234

I W -

A STUDY OF THE SOFTWARE

MAINTENANCE PROCESS OF

AIR FORCE WEAPON SYSTEMS

AFITIGCS/MA/82D-5 THSS James P. Joyce I I
CAPT USAFCT

7E5 23 ':83

Approved for Public Release; Distribution Unlimited

3ALE

*

A STUDY OF THE

SOFTWARE MAINTENANCE PROCESS

OF

AIR FORCE WEAPON SYSTEMS

THESIS

Presented to the Faculty of the School of Civil Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requiremeits for the Degree of

Mas ers of Science t -. ;1

BY ~'' -

JAMES P. JOYCE -------

CAPT USAF .

GRADUATE COMPUTER SCIENCE . J
DECEMBER 1982

Approved for Public Release; Distribution Unlimited

Wa
i-

. Preface

The majority of recent software engineering

advancements have been directed towards improving the

methods of developing software. Relatively little work has

been devoted to the study of methods to maintain software

once it has been developed. Yet, the rising cost of

software maintenance is causing a change in emphasis.

Indeed, the cost of supporting software within Air Force

weapon systems is becoming a major concern. The purpose of I

this study was to investigate the software maintenance

process of Air Force weapon systems in order to identify

methods to reduce software life cycle costs. In

accomplishing this objective, this research provides a

profile of maintenance management and programming methods in

use at selected Air Force systems. By describing and

analyzing the attributes of this specific software

application, this work provides a valuable contribution to

the evolving field of software maintenance engineering and

outlines directions for further research and

experimentation.

The findings of this research are based on information

obtained from interviews of many knowledgeable personnel

within several Air Force organizations. I thank these

individuals for the time, patience, and effort extended in

answering my many inquiries. I would also like to thank Lt

Col Mueller, Air Force Test and Evaluation Center

(AFTEC/LG5) and his staff for sponsoring this thesis and

ii

p - - . -O-

4 providing extensive expertise and assistance during this

research effort. Lastly, I extend sincere thanks to

Professor Daniel E. Reynolds, Assistant Professor of

Computing Sciences at the Air Force Institute of Technology

for his guidance and support in completion of this study.

As thesis advisor, Professor Reynolds was of invaluable

assistance in providing research directions and in

preparing this report.

The interaction with these people coupled with the

challenges presented by the research subject have made this

thesis effort a stimulating, demanding and rewarding

personal experience.

JAMES P. JOYCE

II
4

iii

.. --- -- -- -- -- - -- -- -- -- - -- -- -- ------------., -- ' . . _.- . .. :

Preface ... ii

List of Figures vi

List of Tables .. vii

Abstract .. viii

ii ~Is Introduction

Computer Technology: The Software Investment... 1
Research Scope: Weapon System Computers 4
Current Perspective: Weapon System Software
Management 8

Problem Description - Management of Maintenance
Costs ... 0.... 10

Research Objectives 12
Research Methodology 13

II. Software Maintenance - A State of the Art
Review 15

Software Maintenance - An Overview 15
Management Approach o 18
Readiness Planning *......... 18
Change Control...o..... 20
Quality Assurance 21
Scheduled Implementation 23
Programming Approach...... 25
Previous Studies o.......... 28
Study 1: Lientz - Swanson Study - 1978 28
Study 2: Lientz - Wegner Study - 1980 31
Study 3: BDM Study - 1981 32
Study 4: General Accounting Office Study -1981 36

Maintenance Problems 38
Chapter Summary 40

III. Methodology,o.......... 43

Sampling Population Description................. 44
Data Collection Method 46
Interview Questionnaire Description 51
Data Analysis Approach........ o 54

iv

. i.--- - 9
- - " - ,, - " ' - - " . . . i . .. I -" - -

:: -
... f

I -
I . ..*

PA"s

IV. Data Analysis of Software Maintenance

Thesis Objective 1: To Identify the Factors
Which Influence the Level of Maintenance
Costs Within Air Force Weapon Systems 55

HYPOTHESIS 2 60
HYPOTHESIS 23........................ *........* 63
H YPOTHESIS 3o........ 65

Objective 1 Summary *.**** 70
Thesis Objective 2: To Identify AirFoc
Policies Which Tend to Cause Excess Resource
Commitments to Software Maintenance of Weapon
Systems................................. 71
HYPOTHESIS 1 * 71
HYPOTHESIS 2 72
HYPOTHESIS 3 *...... 74
HYPOTHESIS 4 ****..... 75
HYPOTHESIS 5 80
Objective 2 Summary ** ...*a 81

Thesis Objective 3: To Develop Policy Recomen-
dations to Improve Maintenance Support of
Existing and Future Software Programs 814
HYPOTHESIS 1 84
HYPOTHESIS 2 *....... *..... 87
H YPOTHESIS 3 88
Objective 3 Summary 89

V. Summary and Recommendations 90

Summary ofMajr Findings 90
Recommendations.............................. 98
Comparison of Fids......... 1 06
Thesis Accomplishments Summarized 107
Thesis Conclusion.,..*.............. 109

Appendix 1: Structured Interview Questionnaire 121

Appendix 2: Description of Systems Investigation..... 140

Appendix 3: Data Anslysis Methods o..... 148

Appendix 14: Responses to Questionnaire - Analysis 157Vi a.I6

1-1 Hardware/Personnel Processing Costs 2

1-2 The Computer Dollar 3

1-3 Hardware/Software Cost Trends 4

1-4 Ten Year Forecast - DOD ECS 6

1-5 Ten Year Forecast - Hardware/Software Costs... 6

2-1 Maintenance Process Functions 17

2-2 Configuration Management Influence 22

2-3 Quality Assurance Effect on Maintenance
Functions 23

2-4 Management Influences on Maintenance Process.. 26

2-5 Management and Programming Influences on the
Maintenance Process 27

2-6 Causal Effects on Level of Maintenance 30

2-7 Configuration Management Organization 34

2-8 Effect of Undiscovered Errors 41j

4-1 The Softwrae Maintenance Dollar 62

4-2 Software Growth Over Time 65

4-3 Level of Maintenance Workload by Time 66

4-4 Factors Affecting the Maintenance Workload.... 68 j
4-5 Software Maintenance Expertise Areas 76

vi

Tale

TableZAL

1 Regulation Documents for Air Force Weapon
System Computers........................ 10

2 Air Force Systems Studied.................... 146

3A System Investigation Design Structure -

ObjSy tivestgto Deig Structure........... 48

3C System Investigation Design Structure -
Objective 23.................................. 50

4i Problem Area Response Description 81

Vii

The increasing cost of software maintenance is becoming

a critical concern. This master thesis profiles Air Force

software maintenance activities and provides recommendations

for improving management and programmer efforts. The

software maintenance activities of thirteen Air Force weapon

systems were investigated through structured interviews of

key management and programmer personnel. Analysis of

interview responses resulted in the identification of four

factors which effect the level of maintenance effort:

system age, personnel experience, documentation and code

quality, and level of user enhancements. Interview

responses also identified three major management policy

issues which cause the Air Force to make excess resource

commitments to software maintenance functions:

1) Personnel experience

2) Software development and life cycle planning, and

3) Software development/maintenance standards.

Management policy recommendations were developed to reduce

the impact of these conditions on Air Force weapon system

software maintenance activities.

viii

---- WWI

I. Introduction

The cost of computer software is increasingly becoming

a critical issue. The total United States expenditure for

computer programming in 1977 is estimated to have exceeded

$50 billion and probably approached $100 billion (Ref

441:1060). The investment in software is predicted to grow

exponentially. By 1995, the yearly software investment is

likely to be over $650 billion or 21 percent of the United

States GNP. Growth of this measure justifies concern.

A breakdown of total data processing costs shows that

software costs have steadily risen from less than 20

percent in 1955 to more than 80 percent today. Figure 1-1

charts the reduction of hardware processing costs and the

increase in cost of programmer personnel. From 1955 to

1975, advances in hardware technology have increased the

potential processing speed over 800.000 percent and

improved the perf orma nce/ cost ratio 1000 percent. In the

same period of time, advances in software tools and methods

have improved programmer productivity six times (Ref 9:88).

In order to keep pace with the software growth demands, the

population of programmers has grown to over 300,000 within

25 years.

COMPUTER HARDWARE CONFIGURATION
($/HR FOR 3x106 INSTRUCTIONS/SECOND)

10.000

10
UNIT
COSTS

100

10

PEOPLE ($/HR7

60 70 80
YEAR

Figure 1-1. Hardware/Personnel Processing Costs

The life cycle of computer programming software is

categorized into two fundamental phases: development and

maintenance. Figure 1-2 illustrates where the software

dollar is spent during the life cycle. The development

phase consists of the analysis, design, coding, testing and

implementation of computer software which meets specific

user functional requirements. The maintenance phase

consists of removing software defects and adding software

enhancements. About 70 percent of the overall cost of

software is spent on software maintenance functions (Ref

2

ILL L

.-- 1

SOFTWARE DEVELOPMENT

I\

SOFTWARE MAINTENANCE

Figure 1-2. Software Dollar

10:65). Figure 1-3 graphically reveals that as software

costs grow, a larger proportion of software dollars are

going to software maintenance than to software development.

This trend will continue as long as increasing amounts of

software are added to our inventory and the operational

life span of the software tends to get longer. The result

is more software in the maintenance phase of the life

cycle. In addition to the monetary commitments, 75 percent

of the programmer workforce is committed to software

maintenance activities instead of developing new

applications (Ref 68:87). The current situation has caused

severe budget restrictions and controls to be instituted.

For this reason, the current large investment of resources

and the projected future costs have caused widespread

concern,

3

- - .' '

HARDWARE .

' OFr"WARE

0 so-
IL
0

-40- sorwP

z

I0 2

P2ww

10651970 1985

Figure 1-3. Hardware/Software Cost Trends (Ref 9)

The impact of the explosive growth of software is also

being felt by Air Force weapon system computer

applications. Indeed, the life cycle cost of computer

software is becoming a major component of Air Force weapon

systems. In 1977, the Department of Defense (DOD) spent

over $3 billion on defense system software (Ref 48 and 74)

and about $4 billion in 1978 (Ref 78). In terms of costs

of acquiring weapon systems computer systems, 80 to 90

percent goes for software. For example, in 1976 the total

cost of software in the Worldwide Military Command and

Control System (WWMCCS) was estimated to be $722 million

dollars or ten times the cost of the WWMCCS hardware (Ref

74). Software represents 4 to 5 percent of the Air Force

4 '.4

Rom

budget and almost 6 percent of the NASA budget. These

expenses are predicted to increase dramatically. A recent

Electronics Industry Association DOD Digital Data

Processing Study was performed by an industry team

consisting of representatives from IBM, INTEL, Control Data

Corporation, ROLM Corporation and TRW. The result of their

study was a ten year forecast of Embedded Computer Systems

Workload in terms of number of computers (Figure 1-l4) and

hardware and software Costs (Figure 1-5). Note that these

growth predictions parallel the estimates made in the

first paragraph of this thesis.

As increased investments in the development of

Weapon System Software have been made, the cost of

supporting and maintaining these systems has become

substantial. Barry DeRose and Thomas Nyman (Ref 14i) verify

this situation with predictions of what it may take to

support the life cycle of future Weapon System computer

systems.

"The majority of complex software systems
are new and still in the development cycle.
As these new systems are deployed, this
cost distribution will reverse to emphasize
the increased O&M burden. This, coupled
with greater system longevity, may ulti-
mately result in a five or ten to one ratio
of O&M cost to R&D cost when viewed over
the total life cycle of a typical System.
With these projections, we will need an
army of software maintainers."

5

I hL~iALl

250

200 CUMULATIVE TOTAL

THOUSANDS
OF 1W .

COMPUTERS

NEW POURCI4A

0 P P 5 .7 -"...,

Figure 1-4. Ten Year Forecast: DOD ECS

~/

2. TOTAL C "OSTS .

BILUONS $

Figure 1.5. Ten Year Forecast: Hardware/Software Costs

Maintenance of weapon system software takes up a

significant portion of the life cycle costs. For example,

a study conducted by Barry Boehm (Ref 9) found the

maintenance portions of the 10 year life cycle costs for

two Air Force command and control software systems to be 67

percent and 72 percent of the total. Note that this agrees

with the findings for all systems as displayed in Figure 1-

6

2. Indeed, the cost of completing maintenance tasks is

many times that of development tasks. A DOD study has

shown that the development costs for Air Force avionics

software averaged about $75 per instruction while the costs

of maintenance changes were in the range of $4000 per

instruction (Ref 98).

The high cost of the maintenance activity is drawing

increasing attention. Both management and research efforts

have been initiated to investigate and reduce the high

price tage associated with software life cycle maintenance.

The rising cost of software maintenance is affecting

Air Force computer systems. Within the Air Force,

computers are administratively categorized into two

functional partitions: Management Information Systems and

Weapon System Computers. Typically, Management Information

Systems are general purpose, commercially available

computers utilized for accounting and finance, inventory

supply management, personnel control, training, research

and development or intelligence data gathering. Weapon

System computer systems tend to be special purpose

computers (sometimes one of a kind) that play an integral

part in the operation of a deployable weapon system.

Weapon Systems computers support functions such as command,

control and communications, weapons delivery, avionics

navigation, and radar. bhe maLn thrust of he resarch ana

investigation of this 2a2= is directed al Air Force x=.

syte C.2nouter sys..1m and noQt AJX Force jUangli"e

7
ho.am

*AM

ibnformaio systema

The early 1 970's marked the beginning of the

deployment of weapon systems where weapon system computers

played an integral part in the total system structure.

During this time period, problems occurred with the

development and support of the computer software. Several

defense sponsored studies (Ref 32.42.57 & 66) revealed

these problems and suggest areas where defense system

software required improvement. Excessive development and

maintenance Costs, lack of standardization, scheduled

slippages and delays, and excessive software errors were

the problems which were identified. The studies pointed

out specific management practices which required major

rework in order to reduce system costs and increase

software reliability. Sample recommendations included:

1. Modification of Procurement and Configuration
Management Policies,

2. Utilization of new software engineering practices
in order to increase productivity and maintain-
ability.

3. Use of standard well established program languages,
4. Control of software support to the same degree as

hardware components.

In 1976, the Department of Defense responded with a

Software Management Plan (Ref 15) which outlined steps to

decrease the reported software problems. DOD Instruction

5000.31 was also released in order to establish seven high

order languages as interim standards for use in developing

new defense systems. Also DOD Directive 5000.29 was

released in order to establish policy for software

management of embedded computer systems during development,

acquisition, deployment, and support. In addition, a DOD

Software Science and Technology (S&T) program was initiated

in order to investigate additional methods for curbing the

software costs. It was understood that further research

and development was necessary to increase management and

programming productivity. Several activities were

initiated with this objective in mind. The results of some

of these activities will be discussed in Chapter II.

Following the lead of the DOD initiatives, the Air

Force has instituted several policies and procedures for

the management and control of the life cycle of computer

software. Table 2 summarizes the documents which influence

the development and maintenance of weapon system software.

Additionally, several guidebooks (Ref 1, 18-20 & 93) have

been developed to aid program managers and programmers in

such areas as life cycle planning, documentation standards,

structured programming, configuration management, software

quality assurance and software maintenance. This guidance

has offered assistance to software managers by outlining

management methods which have proven successful in past

weapon systems.

The major theme which prevails through the change in

DOD and Air Force policy initiatives is to manage software

more like hardware throughout the life cycle. Implementing

these programs has provided a defined, formulized approach

9

to controlling the development and maintenance of weapon

system software. Yet, software management difficulties

still persist. An extensive amount of study has been

directed at perfecting management reviews and programming

technologies within the software development phase. There

has been limited study on how to improve the factors which

influence maintenance productivity. This thesis will

extend the boundaries of previous studies by investigating

the software maintenance process within Air Force Weapon

System programs.

Table 1 - Regulation Documents for Air Force Weapon System
Computers

DODD 5000.1 Major Systems Acquisition
DODD 5010.19 Configuration Management
DODD 5000 .29 Management of Computer

Resources in Major Defense
Systems

AFR 800-14 Vol I Management of Computer
Resources in Systems

AFR 800-14 Vol II Acquisition and Support
Procedures for Computer
Resources in Systems

Prgblem Descr12i= Managmet Jf Maintenan.e Cots

Software maintenance managers are feeling the impact

of having to support the increasing software inventory.

This situation coupled with the fact that the life span of

software is increasing has caused the software maintenance

phase to become a significant activity for managers and

programmers.

10

low -w n

Current literature has indicated that there are many

factors which are causing difficulties within this newly

expanding phase of the software life cycle. One report

suggests that the major problem lies in the way management

views the maintenance process. On February 1981. a GAO

Re:: ±,_ _ ;.nj lre o titled "Federal Agencies'

Maintenance of Computer Programs: Expensive and

Undermanaged" summarized a maintenance - management problem

which persists within several Federal Agencies. The

Comptroller General stated:

"In spite of the high cost. agencies have a
very limited overview of their software main-
tenance operation and have made little con-
centrated effort to effectively manage and
minimize the resources required to maintain
their computer software.

Maintenance is not managed as a function.
That is, ADP managers have done little
either to identify common causes of main-
tenance problems or to take action to re-
duce maintenance costs. .The asn of
maintenance managemen il uJ Jz 2ar t I&
LAI ±he absence S~fa uifrdenitlY~
Qf maintenance, A= L J absence of
Governmentwide gjj n gan h"w ±& con-
trol software mina. and reduce ijcosts,

Managers generally have neither cost
accounting data nor management data on
software maintenance activities and thus
know little about how much maintenance
really costsny ovral, which tpe
of mainteznn cost ±J= most,"

Current Air Force regulations and guidelines do not

adequately address the software management procedures

necessary to limit expenditures while maximizing the usage

./

of available productivity methods. The first step towards

controlling maintenance costs is the identification of the

factors which are causing problems. This would allow

management to take action to reduce maintenance resource

expenditures by reducing the problems which are causing

excess costs. Barry DeRose (Ref 14) further indicates that

these first steps have not been accomplished, when he

states:

"DOD currently suffers from a poor historical

data base of software costs. Not only is the
DOD unaware of what is being spent on soft-
ware in the development, production, and opera-
tional/maintenance phases of a defense systems'
life, but there is considerable uncertainty as
to the proportions of dollars which should
be spent. As it currently stands, DOD in
general does not budget dollars or plan
time for the predictable problems and changes
which we should prudently anticipate in each
of these phases."

The high cost of software is a system of a situation

out of control. Since maintenance functions are

increasingly consuming more of the software dollar, control

efforts should be aimed at this phase of the software life

cycle. Where should these control measures be directed?

This thesis will take a step towards answering this

question.

The purpose of this thesis was to study the software

maintenance process of Air Force weapon systems in order to

identify ways to reduce software life cycle costs. This

was accomplished by meeting the following objectives:

12

/

1..TQ Jify .th f acto.s b w ,nfluenge ± .eve

3.resource pni s er nlable to ealuatemaintenance.2 w o systems

resource expenditures, managers will be able to evaluate

decisions which affect the level of these commitments. In

addition, if problem areas can be identified and resolved

through policy changes, managers and programmers can spend

more time and effort on maintenance tasks.

Chsatrc I provdesths esritin

Completion of these objectives was accomplished in

three phases. The first phase involved a general

literature review in order to establish the software

maintenance life cycle within Air Force weapon systems.

This was accomplished by defining general maintenance

concepts and then applying them to weapon systems through

the summary of recent software maintenance studies.

Chapter II provides this description.

Because of the lack of current and detailed

information, the second phase involved first hand

investigation of the software maintenance process within

Air Force Weapon Systems. This was accomplished by

conducting a structured interview of the managers and

programmers from twelve Air Force Weapon System software

13

/
I g -

projects. Chapter III describes the methodology used for

this investigation.

The third phase involved the analysis and application

of the findings of these interviews. Chapter IV provides a

comprehensive analysis of the data gathered. Chapter V

provides recommendations for improvement of the software

maintenance process within Air Force Weapon Systems.

14

$k

II. Software Maintenance -A State of the Art Review

The increasing cost of software maintenance has been

the major impetus and justification for recent software

research efforts. Software maintenance research in the last

decade has progressed in three directions:

-Definition of the maintenance process

- Identification of problem areas within the

maintenance process

-Development of management and programming methods

for solving maintenance problems.

The vast majority of the progress that has been made in

these areas has been supported by government sponsored

studies. T h is chapter will1 summarize current

accomplishments and establish a basis for investigating the

maintenance life cycle of Air Force weapon system software.

SoQftw.are Mainten.fance An OveiX..±W1

While reviewing the literature, several descriptions of

software maintenance were encountered (Ref 6,11,29,31 & 93).

In hardware terminology, maintenance is defined as "repair

or restoration to the state prior to failure." (Ref 68)

Softwa does not deteriorate or degrade over time. Any

faults that are detected during the maintenance phase are

errors that were made previously in the life cycle.

Swanson's description of the maintenance of software has

gained popular acceptance. (Ref 95) He identifies three

classes of changes that occur during maintenance:

1. Corrective - Fixing a pre-existing error.

2. Adaptive - Modifying the software to accommodate

environmental changes and requirements.

3. Perfective - Improving or augmenting the

performance capabilities.

The process of making these changes is diagrammed in

Figure 2-1. Maintenance tasks are identified by analyzing

the reported software deficiences and requests for software

enhancements. The analysis consists of the validation of

submitted requests and implementation feasibility studies.

The result of this process is the prioritization of software

change requests. Once a maintenance change is identified,

the process of developing the indicated function begins.

This development utilizes the traditional approach for

software production: analysis, design, code, testing. The

analysis phase consists of understanding the change

functions and the software to be modified. The design phase

consists of a redesign of the software taking into

consideration the possible ripple effects of making changes

(Ref 106 & 107). The coding phase implements the program

design using a set of software maintenance development

tools. The test phase assures that the developed code runs

as specified. Then, the next major step is to integrate the

code modification into the baseline system and run system

tests. The system check-out usually consists of laboratory

16

MAINTENANCE - RECEIPT OF SOFTWARE
TASK CHANGE REQUESTS

IDENTIFICATION - REQUEST VALIDATION
- FEASIBILITY STUDIES

MAINTENANC - ANALYSIS
DEVELOPMEN - DESIGN

- CODE
-- TEST

MAINTENANCE - SIMULATION TESTS
TESTING - OPERATIONAL TESTS

NO PASS

YES

IMPLEMENTAT ION

Figure 2-1.* Maintenance Process Functions

simulation tests and operational tests. If any errors are

identified during operational testing then the maintenance

process starts again; otherwise, the code change is

implemented and documentation is altered.

17

Mtnagmgnt A22roac

The maintenance process as illustrated by Figure 2-1 is

affected by management controls in several ways. Within

most organizations the software maintenance management

controls are packaged together under one title -

configuration management. The objective of this section is

to split-out the various management functions and describe

how they affect the maintenance process.

Re diness Pl anning

Management of a system which is planned to change,

requires the planning and development of resources so that

the organization is prepared to respond to the change.

Several methods are used to estimate the time, personnel,

and other resources required to support software maintenance

functions. Good judgement and experience coupled with

several quantitative methods have aided project managers

with the prediction task. Several life cycle cost models

are available: RCA PRICE - S (Ref 90), TRW SCEP (Ref 1),

IBM Walston - Felix Cost Model (Ref 100, and Putnam SLIM Ref

86 & 87). It has been discovered from comparing the life

cycle costs of software projects, that there is a basic

pattern of resource utilization. The input to these costing

models is the project manager's estimations of the factors

which best describe the software product before and after

development (size, application type, development

environment, etc...). The output is a projection of

18

rni-u--- L.

software modification and maintenance costs during the

operational life of the system.

Another method of maintenance workload prediction

involves the use of software reliability studies. As was

first accomplished for hardware reliability, techniques have

been developed that estimate operational reliability of the

software over the system life. By using attributes of the

developed system, the mean time to next failure (MTTF) and

mean time between failures (MTBF) can be estimated. This

gives managers indications of how often corrective

maintenance functions may have to respond to software error

detection. Several reliability models are being developed

and are available for limited application: Littlewood

Bayesian model (Ref 54 & 55), Schick and Wolverton model

(Ref 91), Musa (Ref 75), Trivedi (Ref 99) and Okumoto - Goel

model (Ref 77 & 78).

Once the rate of the program correction and user

enhancement requests can be estimated, the next step is to

judge how easily the software can be modified. Several

software quality metrics have been developed which can be

used to evaluate the level of software flexibility,

portability, and reuseability. Boehm t Al (Ref 11) and

McCall/Walters (Ref 62) have identified quantitative metrics

for quality evaluation. Halstead (Ref 35) and McCabe (Ref

59 & 60) have developed methods for analyzing program

complexity. Management has applied quality metrics to the

evaluation of software maintainability. The Air Force Test

19

. .. i m 1

and Evaluation Center (AFTEC) performs operational test and

evaluations of system software as part of a complete Air

Force weapon system assessment. During the evaluation,

software maintainability is a primary objective. Computer

program code, supporting documentation, and the software

support system are evaluated based on characteristics which

affect the capability of support personnel to accomplish

software maintenance. Numeric scores are assigned to each

of the maintenance characteristics. In order to evaluate

these scores, AFTEC has assigned threshold, and goal scoring

values. Evaluation scores falling below the assigned

threshold value indicate deficiencies while those falling

between the threshold and goal are judged satisfactory and

those exceeding the goal are considered excellent. A

beneficial result of this methodology is that it produces a

very specific list of items that need improvement. The

evaluation methodology is based on weighting those factors

which are thought to most influence the ability to support

the operational software.

Estimating resources to support software change

requirements is an ongoing process which ultimately affects

other management controls of the maintenance process.

Chgnae Conro

* The maintenance process is initiated when a request is

made to change the software product in order to correct

detected errors, perfect performance or adapt the software

20

to other applications or environments. A major management

problem is the control of these changes. The objective is

to:

1. make only needed changes,

2. insure that changes are effectively integrated and

tested, and

3. insure that documentation is changed to remain

compatible with the software.

Several DOD and Air Force documents (Ref 1,16-27) have been

developed to outline procedures for completing software

configuration management. Figure 2-2 illustrates the role

configuration management has in identifying tasks within the

maintenance process. As summarized earlier, a series of

committee reviews evaluate proposed software changes. One

of the considerations of change approval is the level of

resources that are currently available. This is often a

direct result of previous readiness management predictions

and planning. Just as readiness management functions

influence configuration management, change control decisions
often influence future resource requirements.

The final result is not only the identification of

which software changes can be completed but which ones are

to be accomplished.

Software quality assurance objectives differ from

organization to organization but usually entail the review,

21

READINESS PLANNING

MAINTENANCE
TASK

IDENTIFICATION CHANGE CONTROL

Figure 2-2. Configuration Management Influence

rewriting, and enforcement of standards or conventions which

affect the quality of software code and documentation. The

philosophy of quality control has been borrowed from

material manufacturing and production applications and has

been aplied to the development of software. Figure 2-3

illustrates how the maintenance and development phases are

influenced by management's attempt to enforce design,

coding, documentation, and testing standards upon

programmers. Several DOD programming standards have been

developed to support quality assurance efforts. Guidebooks

have been established to suggest methods of applying these

standards (Ref 1 & 93). In effect, what is being attempted

is the integration of perfective maintenance concepts into

all types of software changes. The result has been

increased software performance, reliability, and

maintainability. For example, after implementation the

suggestions of a quality assurance program, the cost of

executing one application was reduced 60 percent and the

22

- I

MAINTENANCE
DEVELOPMENT

Ia SOFTWARE QUALITY
ASSURANCE

il MAINTEN AN CE

TEST

Figure 2-3. Quality Assurance Effect on Maintenance
Functions

execution time was slashed 77 percent (Ref 34). In

addition, the occurrence of error within the system was

significantly reduced. These results were obtained

primarily from the expense of the labor that was required to

produce qualitative documentation and program code. The

success of quality assurance programs rests on the level of

funding and staffing support. as well as, the tenacity with

which management pursues the program's objectives.

S Imnlementation

Scheduled implementation of changes to the software

configuration provides a controlled structured integration

environment. Software modifications are ground together and

implemented in scheduled baseline phase releases. Lindhorst

(Ref 53) indicates several benefits to this management

23

--ii ll L v _~+. J l - . l

I . .,,. , ,,, ,. , + +-.. ..i . . .,. ". .. ' "

approach:

- Consolidation of requests. Some efficiency can be
achieved because multiple changes to the same pro-
gram or module can be combined under one mainten-
ance task.

- Programmer job enrichment. The maintenance schedule
should provide an opportunity for selective program-
mer upgrade training or career broadening assign-
ments.

- Forces user department to think more about the
changes they are requesting. Delayed implementation
of new capabilities will tend to filter out those
changes that will be short lived, unimportant or
both.

- Periodic application evaluation. Scheduled changes
provide convenient milestones for consideration of
the cost effectiveness of continuing the current
system.

- Elimination of the "squeaky wheel syndrome". When
users realize that change requests all receive equal
consideration and implementation of the changes is
on a planned basis, there is less cause for
attempting to pressure the maintenance staff.

- Programmer back-up. The maintenance staff manager
has more latitude in assigning his personnel to
tasks and can conduct crosstraining within the
maintenance teams.

- Better planning. Long and short range staff plan-
ning can be more effectively accomplished when the
workload can be predicted with a reasonable degree
of accuracy.

- Data processing change requests are regarded as
being as important as user requests. Under this
type system it is possible to give both user and
change requests fair consideration when planning
for the next scheduled maintenance period.

Figure 2-4 summarizes the effects of scheduled

maintenance and other management approaches to controlling

and influencing the maintenance process. Scheduled

maintenance dictates when approved software changes will be

42

released to system operations. Quality assurance programs

assure that all software changes within a phased release

conform to a level of performance and programming standards.

In summary, management attempts to assure that there

are sufficient maintenance resources to complete validated

software changes. During the implementation of the changes.

management is attempting to reduce the propagation of future

constraints which may cause recurring maintenance. The next

section will review the programming methods which influence

the accomplishment of assigned maintenance tasks.

Progrnamming Approach

The literature abounds with methods of designing,

building, and documenting software systems. The most noted

are structured design (Ref 108), the Jackson method (Ref

73), the structured analysis and design technique (SADT)

(Ref 13), the Warnier-Orr Approach (Ref 101), the system

design methodology (SDM) (Ref 36), architecture definition

technique (ADT) (Ref 4), and the requirements engineering

validation system (REVS) (Ref 39). These methods are

intended to increase the overall productivity of the

programming staff and can be applied to software production

during the development phase or maintenance phase. Test

procedures such as structured walkthroughs have also been

developed to assist programmers during software production.

Figure 2-5 outlines how the software development and test

methods influence the maintenance process.

25

*j I

I READINESS

PLANNING

IDENTIFI CATION CONTROL

DEVELOPMENT SOFTWARE QUALITY

TEST

PASS

NO
~~YES ,

SIMPLEMENTATION 1 SCHEDULED

I IMPLEMENTATION

Figure 2-4. Management Influence on Maintenance Process

Automated tools have been developed to assist with

management and programming functions. For example,

computerized costing models are used to assist managers

with resource requirement predictions; debugging and

diagnostic packages assist programmers with removing

detected errors from software. John Donahoo and Dorothy

Swearinger (Ref 29) have categorized all the existing

software tools as they relate to specific managment and

26

* , * , . * ' . - |

Ii.
- 00

0

uGDL0

27n

"z0

27D

.........

programming functions within the maintenance process. In

addition, the BDM study has investigated the extent to which

these tools are currently being utilized within military

weapon system applications. Air Force guidebooks (Ref 1 &

92) have been developed to discuss how these automated tools

can be utilized to perform maintenance activities.

Prev~ious StUdie

Four studies have provided the majority of the direct

investigation of the support process of software systems.

Each study was completed with separate research objectives

and therefore analyzed the support process from a different

perspective. As a result, we begin to picture the structure

of the software maintenance process of Air Force weapon

system computer applications. The findings of each of these

studies are provided next.

Std iiL Lienz = Sanson Std = Ila L&ef 46-52)

The first extensive studies of maintenance functions

were a series of surveys conducted by the UCLA School of

Management. The most comprehensive of these surveys is the

study completed by Lientz and Swanson in 1 978.

The problems of maintaining application software within

487 data processing organizations were surveyed. The survey

investigated the gamut of business applications. The

typical application software system had the following

attributes:

1Average Operations and Maintenance age of 3 years

28

2. Consisted of 23,000 lines of code in 55 program

modules.

3. 75 percent were written in COBOL or RPG.

The maintenance process for these applications was studied

with the following results:

1. Through the maintenance phase, program code grew
in size by 10 percent per year.

2. About 75 percent of the systems were maintained
by the equivalent of one programmer or less.

3. Maintenance time was allocated to tasks as
"'follows: 20 percent - corrective; 25 percent -
adaptive; 55 percent - perfective.

The magnitude of the maintenance effort was found to be

affected by four variables: system age, system size,

relative amount of routine debugging, and the relative

development experience of the maintainers. Figure 2-6

illustrates the paths that interrelate these variables.

Five causal paths relate the variables in the diagram. The

first path shows that as system age increases so does system

size. The increase in both variables leads to greater level

of maintenance effort. The second path is an extension of

the first. This path indicates that increases in system

size cause increases in the relative amount of routine

debugging and maintenance effort. The third causal path

shows that with increased system age, the relative
experience of the maintainers tends to decline leading to

increased maintenance effort. The fourth path indicates

that as the relative experience of maintainers declines, the

amount of routine debugging and maintenance effort

29

I
-7

RELATIVE
, DEVELOPMEN'
EXPERIENCE

SYSTEM ()/AMOUNT OF ()RELATIVE
AGE +MAINTENANCE -''- AMOUNT OF

EFFORT - ROUTINE

SDEBUGGING

SYSTEM
SIZE

Figure 2-6. Causal Effects on Level of Maintenance

increases. The fifth causal path indicates that increased

system age leads directly to an increase in the level of

maintenance effort.

Where development tools were used, the software product

was perceived to be of better quality. But there was little

evidence to show that either development tools or

organizational controls contributed to a reduction in

maintenance person-hours. Factor analysis of survey

results identified six major problem factors with the

maintenance process:

1. User knowledge

30

I El -

2. Programmer Effectiveness

3. Product Quality

4. Programmer Time Availability

5. Machine Requirements

6. System Reliability

This study was the first attempt at specifically

studying the software maintenance process with business

applications. The major results of this study were the

identification of the problems within the process and a

correlation of several factors with maintenance level of

effort. This study did not look at military real time

processing applications and did not identify policy

decisions which caused management and programmer problems.

At the request of the Department of Navy, Lientz and

Wegner applied some of the earlier maintenance study

objectives. This study was directed at 18 Navy and Marine

Corps weapon system software projects at eight different

locations. The major purpose of this study was to assess

the current state of the development and support process of

Navy weapon system software in order to provide a basis for

improving cost, reliability, and performance. The typical

application software project that was surveyed had the

following attributes:

1. Average operations and maintenance age of six
years.

2. consisted of 176.000 lines of code within 115I program modules.

13

3. Over 80 percent were written in Assembler or
CMS-2.

The Lientz-Wegner study concluded that:

1. Program code had a yearly growth rate of 5 percent
2. Program code is usually developed by one

contractor and maintained by another.
3. These applications performed more test and verifi-

cation than business applications because of the
requirement of high operational reliability.

14. Perfective maintenance is allocated the majority
of available maintenance man hours.

5. The majority of weapon system applications
utilized formal quality assurance and configura-
tion control programs.

The sample size of this survey disallowed the type of

statistical analysis performed in Study 1. Yet, this study

did identify three conditions which are perceived as major

causes for software change of modification: hardware

change, user demands and development of new weapon systems.

The major result of this study was a profile of the

maintenance life cycle of military software systems and a

checklist of management and programming methods and tools

being used. The study did not look at Air Force weapon

system software appl ications and did not directly

investigate policy decisions which affect excess maintenance

costs.

The objective of this study was to identify and

describe methods for evaluating the software support

facilities being used to maintain weapon system embedded

computer software. BDM corporation developed

recommendations based on the observations of the maintenance

32

process and the automated tools being used at 12 military

locations. BDM found that the maintenance process consists

of similar functions within each of the systems they

observed. The process of modifying weapons system computer

software involves these steps: analysis of change

requirements, redesigning, programming, debugging,

integrating, testing and verifying. Formal controls have

been established for managing software changes. Figure 2-7

illustrates how software is managed in conjunction with

changes in weapon system hardware. The process begins with

the reporting of system problems or change requirements to

the program manager. This results in a study of the

validity, feasibility, risk, costs, and impacts of

implementing the requested changes. The results of this

study are then evaluated by the Configuration Control Board

(CCB). This board analyzes the cost/necessity issues and

allocates resources to implement needed changes. The

Computer Program Configuration Sub Board (CPCSB) reviews the

development of software to insure correspondence with

schedules, requirements and resource limitations established

by the CCB. Detailed configuration management procedures

define the interface responsibilities between these change

control boards.

During "maintenance development", the change

requirements passed by the CCB are translated into a

detailed redesign of a portion of the software. This design

is coded and eventually assembled into object code. The

33

USER

PROGRAM

MANAGER

ARDWARE SOFTWARE

[CCB IMP'ACTS
CPCSB

HARDWARE SOFTWARE
MODS

MODS

Figue 7. CnfiuraINTEaRAeTIO gniato

3L

- -~ AND

V&:V

object code is then tested and validated before it is

implemented into the target computer system. The

programming, integration, testing, and validation are

performed on automated support systems. BDM partitioned and

described these support systems in six categories:

1. Host Processing Systems

2. Software Benches

3. Laboratory - Integrated Test Facilities

4. Operational - Integrated Test Facilities

5. Configuration Management Systems

6. Other Support Systems

Host processing systems can be the target computer or a

separate larger development system. The larger development

computers are typically equiped with an operating system,

compilers, assembler, editor, program maintenance library

software, and debugging packages. These features facilitate

large scale, multi-user development. Software benches use a

simulation CPU to represent the target processor external

environment and interface with either the actual target

processor or an instruction level emulation of the target

processor. Laboratory-integrated test facilities exercise

the operational software on the target computer in a

simulated operational environment. Most of the equipment

which is tied to the target computer are used in these

tests. Operational-integrated test facilities exercise the

software within an actual or representative operational

environment. In order to assist with the control of

35

software changes there are a limited number of automated

configuration management tools. Yet, most configuration

management is still being accomplished manually. Various

other support systems are being utilized such as automatic

documentation generators, proj,)ect planning and tracking

systems, and word processing systems.

Study 3 provided a more descriptive look at the inner

workings of management controls and programming development

tools within Air Force, Navy, and Army weapon System

software. The purpose of the BDM study was not to take an

analytic approach to improving software maintenance

conditions within these systems. An attempt will be made by

this thesis to develop improvement recommendations.

Study .4_; Getneral Accounti~ng Officer CGAO) Std ;- I_93

The GAO reviewed computer software maintenance within

15 federal data processing installations. The purpose of

the study was to determine whether the problems found in

certain sites existed at other federal organizations. Their

findings strongly indicated that several problems are wide

spread. The GAO reports that of the systems investigated

two-thirds Of the programmers were assigned to maintenance

functions and approximately 80 percent of maintenance costs

are expended on paying salaries for maintenance personnel

(managers, analysts, and programmers). As might be

expected, the remainder of their findings were directed at

emphasizing deficiencies in the Way softare maintenance is

36

.~ -V

being performed. The most significant findings were:

1. Government managers are not managing software

maintenance as a function.

2. Government managers do not have available specific

standards and goals for performing software

maintenance management functions.

3. The documentation of systems is either inadequate

or missing.

4. Software support tools are utilized only on a

limited basis.

Because of the vast range of applications which were

reviewed, a detailed description of the surveyed software

systems was not reported.

The General Accounting Office Study reaffirms the

general findings of the previous studies and provides a

mandate for further investigation. The findings of these

studies have provided much of the information needed for

understanding and managing the resources involved in the

support of Air Force weapon system software. The current

literature was further investigated in order to formulate

further hypotheses by which Air Force weapon system software

could be evaluated. Several articles reported maintenance

problem conditions which are causing managers and

programmers to be unproductive. These maintenance problem

conditions are discussed below.

37

The following maintenance problem areas have been

identified:

- High turnover rate and low level of personnel
experience

- Low level of software reliability and quality

- Lack of maintenance standards

- A misdirected management control system

- Poor software documentation

Most sources agree that maintenance tends to be a

personnel intensive activity. Typically, 75 percent of the

programmers in the programmer pool are directly involved

with the maintenance function. This situation coupled with

the rising cost of programmer salaries has caused personnel

costs to be the most significant cost factor of the software

maintenance dollar. The probable causes for the personnel

intensive condition have been discussed by several authors.

Liu (Ref 56) has found that when a person is assigned to a

maintenance group, tasks are assigned without adequate

training or proper orientation. To make things worse, there4

are rarely proper maintenance standards or procedures upon

which to refer. As a result, the individual is left to

develop a unique set of "tricky games" in order to

accomplish maintenance tasks. Thus, it often takes two' to

three years to train someone to assume responsibility for a

large application system. Then, just as programmers gainj their experience with a system, they are lost by job

38

turnover or career progression. Canning (Ref) reports that

personnel turnover is a serious maintenance problem.

Indeed, Boehm (Ref 9) has found that maintenance programming

has been given more than secondary attention. In fact, many

managers still look upon maintenance programming as a

necessary evil and tend to assign the junior programmers to

fill the positions. Because of the emphasis on new systems,

programmers working on development tend to receive greater

career visibility and progression. Under these conditions

no wonder programmers seek refuge from that so called

"drudgery" of maintenance work.

Maintenance programmers tend to work under great

management pressure to fix software according to set

schedules. As a result, getting the task done becomes the

prevailing theme, while maintaining software quality

sometimes becomes a luxury consideration. Through the study

of many system life cycles, Lehman (Ref 44) has found that

as software systems get older they tend to get increasingly

complex unless something is done to simplify or restructure.

With the lack of experienced, capable programmers,

emergency corrective type fixes and "greatly needed" user

adaptive extension take first priority over perfective

improvement tasks. As a result, quality factors such as

system documentation are often times infinitely delayed (Ref

56). Several writers have indicated that documentation is a

critical problem during maintenance (Ref 6,44,49 & 85).

39

As corrective, adaptive and perfective changes are made

to software, additional errors are induced into the system.

McHenry (Ref 52) reports that the probability of begetting

errors during this period is normally 10 percent. Yau and

Collofellow (Ref) indicate that a ripple effect condition

often causes changes in one module to cause errors to ripple

through to other modules. These undetected errors cause

further maintenance effort. Figure 2-8 (Ref 63) shows how

these undetected errors increase corrective maintenance

effort later in the life cycle. As corrective maintenance

work is accomplished, the quantity of undiscovered errors

increases. Then as the software is operationally exercised

through logic scenarios not earlier tested, these errors are

discovered creating more corrective maintenance. Without

controlling the rate of error during software changes, this

cycle will cause corrective maintenance to grow

exponentially through the life cycle of the software.

The objective of management is to control the

instability of this process and at the same time increase

the productivity of personnel and computer resources. Yet,

historically maintenance management efforts have been by the

"seat of the pants." Several writers (Ref 30) have

identified the management control system as the weakest

link and most deserving of increased attention.

40

0 ;p

w ii

00
43i

ai

41

ca

60

Ik

Catr Smmary

The method of developing and maintaining software is

undergoing changes with the objective of reducing life cycle

costs. Management controls and programming methods are

constantly being developed in order to produce an initial

software product which has fewer hidden errors and which can

be easily modified to changes in environment, function, and

performance. Several management and programming methods

have proven to effect maintainability of software. The

contention is that these methods increase maintenance

productivity, reduce the commitment of personnel, reduce the

occurrence of hidden errors, increase the quality of the

software product, and ultimately reduce the costs of

software maintenance. The extent to which these management

and programming methods are applied to Air Force Weapons

System software applications is not known. The study

described in Chapter 3 attempts to detail the level of

application and attempts to investigate additional methods

for increasing productivity and lowering maintenance costs.

42

* , t "*... *.-, -*

III. Methodology

The study of software characteristics and qualities has

been influenced by large human variability. The variability

of programmer preferences and application requirements has

caused difficulties in applying value ratings to specific

software practices. Preliminary research has shown that

attempts to measure the influences upon software

maintainability have had the same difficulties. Because of

this situation, this thesis research has taken a very

structured approach to the study of software maintenance

practices within Air Force systems. Three specific research

objectives were formalized and all thesis work was applied

to these goals. A set of experimental hypotheses were

established to provide a basis for accomplishing each

objective. The hypotheses were developed based on the

literature research findings presented in Chapter II. A

questionnaire was constructed to test the validity and to

quantify these hypotheses as they apply to Air Force weapon

systems. This questionnaire was used as the basis for

personal interviews with key management and programmer

personnel within a sampling of Air Force systems. This

chapter describes the methodology which was used to plan,

administer, and analyze the interview investigation.

Chapter IV provides a summary of the interview responses as

they apply to the thesis objectives. Chapter V outlines

software maintenance recommendations.

43

-W • l -- , .

,,I .l

To accomplish the thesis objectives, managers and

programmers from 13 Air Force weapon system software support

efforts were interviewed. These systems were selected

through a preliminary filtering process so as to insure that

the time spent on the thesis investigation would be

productively applied. A large group of systems were

initially contacted based on available points of reference

supplied by the sponsor of this thesis (AFTEC). Further

contacts were developed from discussions of personnel, from

this original group of systems. The list of possible

systems to be studied was limited to those which were

acquired, developed, or maintained in accordance with the

procedural requirement of the 800 series Air Force

regulations. Additionally, in order to have some basis for

inquiry, the list of systems was limited to those which had

been in the maintenance phase of the software life cycle for

at least one year. Another prequalification condition was

that key management and programming personnel would be

available for personnal interviews and follow up questions.

These prerequisites were established in order to increase

the probability of obtaining answers to posed questions

within the limited research time frame of this thesis.

Further constraints were required to limit the number

of systems to be investigated. Three categories of systems

were chosen from systems meeting established prerequisites:

Communications, Avionics, and Ground Radar. The purpose of

44

..

choosing these categories of systems was to gather

maintenance information from projects which are managed and

supported by different Air Force organizations, and have

varied mission priorities, objectives, and restrictions. By

investigating Air Force systems in this manner it was hoped

that common relationships could be established, and

successful management solutions to maintenance difficulties

could be identified. Systems within these categories were

selected for the purpose of observing representative

management and programming methods. For example, most

ground radar systems are currently managed by Headquarters

Strategic Air Command (HQ SAC). The software maintenance

functions of these systems is completed by three different

types of organizations: contractors, SAC tenant

organizations and HQ SAC. A software system from each of

these organizational types was selected for study. Table 2

summarizes the systems that were selected and the

organizations which were contacted for this study. Appendix

2 provides a description of the mission and system

components of each of these systems.

SYSTE CONACTE ORGANIZATIONS

Ground Radar Systems:

PARCS HQ SAC, Raytheon
PAVE PAWS HQ SAC, 3900 CSS
COBRA DANE HQ SAC, Raytheon
BMEWS HQ SAC
FPS-85 HQ SAC, 20 MWS
FSS-7 HQ SAC
CCPDS HQ SAC

4~5

Avionics Systems:

FB-111A Sacramento-ALC/MME. General
Dynamics, Rockwell

F-111D Sacramento-ALC/MME, General
Dynamics, Rockwell

F-111F Sacramento-ALC/MME, General
Dynamics, Rockwell

Communication Systems:

AFSATCOM AFCCPC
IEMATS AFCCPC
PIDP AFCCPC

Table 2. Air Force Systems Studies

Appendix 2 also lists the key personnel who were

interviewed with respect to each system. Even though only a

few names are listed, much additional assistance was needed

to gather facts necessary to allow the key personnel to

respond to the interview questions. In some cases, other

personnel were brought in to explain areas in which they

were more technically familiar. The result was the

formulation of a single response to each interview inquiry

made for each system studied. In the case where two

opposing responses were given by different personnel within

an organization, the differences were successfully resolved

by having each person confront the other's point of view.

Daoa o tion ethod

After the systems to be studied were identified,

the personnel responsible for the software maintenance

46

, ,'Ae&,I,

management of these systems were contacted by phone. An

explanation of the research objectives and study scope was

explained at this time. An appointment date for a personal

interview was also established. A message was sent to each

oganization in order to establish a formal committment of

personnel and to establish necessary security clearances. A

TDY trip to HQ SAC-Offutt AFB NE. SAC ALC/MME-McClellan AFB

CA and AFCCPC-Tinker AFB OK was completed in order to

conduct interviews of key management and programmer

personnel at those locations. Because of remote or

distributed locations, the remainder of interviews were

conducted by phone.

Maintenance information for each system was gathered by

interviewing various personnel using a pre-established set

of questions. The questions were developed to verify or

redefine conceptual hypotheses relating to the management

and support of weapon system software. The hypotheses were

chosen as the vehicle by which the thesis objectives could

be achieved. These hypothesis were established based on the

literature research findings discussed in Chapter II.

Tables 3A. 3B, and 3C outline the investigation design

structure for each thesis objective.

The interview process itself was conducted by first

contacting the manager of the shop responsible for

performing maintenance of the system's software. Then the

research purpose and objectives were further explained. A

general description of the types of inquiries that were to

47

W.. li M" .

0 4 " (D H
0t(D 0 -5 0

0

(0 :3 LA
ct 0

(D (D~

(0 (D 2

(D

Cfr C -P 0 C-#- IO 02<- ~ct -3 w ~
(00 E Z X Z' C4 2) (: (D0(0(

' 3(D (D :a (D~ 0 0 w M c

vi~~~ ~ ~ ~ (0(I --- (DWc/2~l w
M ((0w (D0) 04 M 0 H

(DI- OH (0(0 (11 j0 02

(D CA (D 0 (<0 00 CO ~ (De PN(0-

0 Ct 0 i-5 M0 (D0z a
= ~ wI "!$A*w . Wc tlVC1

< It IV I,(o r D)c

M~ ~ ~ ~ " (0-3 qc

(D0 = r6 00 0 0 :e

01 0D 0 -0 00H5
w t C C ct "!:I Ct "ic

0 HD

IIIA
H- -. 4-

I VI

C,,

0 (DCD 0 ACt 0 9

= 0 IEA q a
ct0 ~ CDx" 4 4

M0)~1 (a (Av 4 .4 C
C c0 1 -

(DO (D D 11
3 z t2C

(D C) 0 l
OCD (

0 0

(D

wA NJ H j

0 (D :T <0) (MC I's 0 02(D 0
a I's et r- (E 0 2Q s ~ctF- ((0 cl' Cl) I

0(D 2 Z A(0 0 m 4) X :3 : I. 1-4 -q0 (D "9 : a~ *I'woq ct w /

0D :02 CA '0 0 "CD WCl - 0 0(D W 0 m-
(DJ 1h - Z (D 0 It< 0

0A mc 0o o~ , W 00 M .

10 0 - AP)0 W w0 P- (D :3 (D
0 00C C 0O)- z0 l :3C g t ca

(D 0 x w A)
(D0D0 c3 t a 010I ct H.C D 0 :5

0c10D: : t O ~0 c 0 0 0 l <D ct

0 0 0 CA 0

~)00
~N) I-'d I0-4

w C/2 I- CA c l :z CD
(D (D10D o((D e

00

CD

o~~- 00)000 -

IA' 26L*tf L -

0- s 13

cr (D< q 1

z c-'0 q

1 09(D 0 e4 (

20 0o 0
C0

1c-2 '

CD ct
(D

(A) 2A2 Ea)> 0

(D o~q r- I=& 0 -0: +ca
P~- q w- 0 -t C+ W 1: D mZ Cl.

~C+D D C4~ (D 0o H

(~D 0 D % a tq 0).
zD C+ "I C O I' 10 m wO a

z A 0Oc~ "o 0 qZctD 0
(D (D CA C :O

Cl*M a C (DO H

(D (D(D -V0 D 25

I0< HCOC (D0

11) w 0 ci-
0 .4) CD C+~< (DCLO M- g

oA C' 9) m C

0 1 C0

C CD

(Da CD COD

(0D i0) .4
HH H 0~ -

0 0 0
0 o

H4 z

50

L

be made was also given at this time. Then a time was

scheduled for a meeting with the personnel best cabable of

answering the inquires. In most cases, these personnel

included the manager and senior members of the staff. While

waiting for this meeting, key system documentation was

obtained and studied. The following documents were

reviewed:

1. Computer Resources Integrated Support Plan (CRISP)
2. Software Configuration Management Plan
3. Software Programmers Users Manual
4. Local Operating Instructions, Regulations,

Standards, and Procedures
5. Recent Software Maintenance Related Correspondence

From these documents, many of the questions in the pre-

established questionnaire were answered. In addition, a

general understanding of the system's mission and standard

operating procedures was obtained. As a result, the actual

structured interview process involved the clarification of

information found in the reviewed documentation and

answering questions not answered in the questionnaire. In

some instances, another organization was better qualified to

answer some of the inquiries. In these cases, points of

contact were established and these questions were answered

at a later time.

Itri Questionnaire .siitiDZ

Table 3A diagrams the investigation structure for the

first thesis objective. The hypotheses for this objective

were chosen in order to define a relationship between the

commitment of organizational resources and the level of

51

=mw

software maintenance workload that is accomplished. The

questions used in conjunction with these hypotheses were

aimed at gathering expert opinions and judgements as to the

extent these relationships hold true.

Table 3B outlines the method for accomplishing the

second thesis objective. The hypotheses supporting the

second objective were chosen in order to produce a clear

picture of how current Air Force policies affect the balance

of the relationships established in the first thesis

objective. This was accomplished by asking questions aimed

at identifying areas which cause hardships for maintenance

managers and programmers. Once these areas were identified,

then the policies which create these conditions could be

investigated.

Table 3C identifies the approach used for developing

some useful recommendations for improving the maintenance

process (i.e. thesis objective 3). Generally, these

recommendations were developed based on the findings of the

previous objectives. Yet, before these findings could be

applied, further study was needed. The first hypothesis

investigated what methods have been tried or are under

development. The second hypothesis investigated the

application of a maintenance improvement recommendation made

by several previous studies. The third hypothesis attempted

to solicit any untried improvement ideas from' current

personnel. The specific findings of these three hypotheses

are discussed in Chapter IV. A total list of

52

recommendations formulated to complete the third thesis

objective is presented in Chapter V.

As mentioned, each hypothesis has an associated group

of questions which are used to validate or negate the

hypothesis statement. The content of each question was

developed to further the investigation of the hypotheses.

Some questions are used in conjunction with several

hypothesis. Using this structure, each quet that J.1

aked during h interview 1.1 diretl related to theass

The organization of the questions is based on a logical

interview presentation. The terminology and question format

were modeled after the questions used in previous studies

(Ref 52). The questions were designed to collect both

factual and perceived information. The questions were

partitioned into four sections:

Section 1: General System Description

Section 2: Maintenance Effort - Facts

Section 3: Maintenance Effort- Perceptions

Section 4: Data Measurement Evaluation

Questions in the first section are designed to identify the

weapon system and to describe the development of the

software product. The next two sections attempt to define

the maintenance life cycle, software growth trends, and the

management/programming methods used to support software.

One section identifies factual information; the other

section attempts to draw on the opinions and experience of

53

IIgo

software maintenance personnel. Section 14 investigates the

collection of maintenance activity data.

DW~ Analysis A~proach

The results of the interviews are presented in Chapter

IV through a discussion of each objective hypothesis.

Depending on the type of question used to investigate the

hypothesis, the interview responses are summarized in

several different ways. Responses are presented through

narative, pie charts, causal-loop diagrams and other

graphical methods. These summaries are based on a reivew of

the responses and the application of simple non parametric

statistical analysis. Appendix 3 details the three major

statistical data analysis methods used. Further statistical

analysis was not warranted because of the limited sample

size and the general nature of the data being sampled. To

support the statistical conclusions made in Chapter IV,

Appendix 14 contains a list of responses to those questions

which were analyzed statistically. Appendix 14 also contains

the appropriate data analysis solutions to the recorded

responses.

After each hypothesis is discussed, the interview

findings are applied to directly answering the thesis

*objective. This process is completed for each thesis

objective in the next chapter.

I5
*1- 77-

IV. Data Analysis of' Software Maintenance Investigation

This chapter presents an analysis of the responses

which were gathered during structured interviews of key

personnel involved with the software maintenance of weapon

system computers. The interview responses provided a

descriptive picture of the current state of software support

conditions within observed systems. In which software

support conditions are constantly changing. The analysis of

the interview data served as a basis for validating a set of

pre-established hypotheses and for accomplishing each thesis

objective. Supporting hypotheses for each thesis objective

examined and the -esults of each hypothesis test summarize

and relate to accomplishing each thesis objective.

OBJECTIVE :L T_ Identif Tj= Fatrg Whbich Influence The
nge I MitnceCosts Withn hJX rc

Wga~n Sytm

HYPOTE5IS I - Weapon System software projects can be
categorized as a single application type.

This hypothesis was designed to establish the

characteristics of the group of systems that were studied.

The discussion of these characteristics of this class of

computer applications provides the basis by which the

conclusions drawn from this study can be applied to other

weapon systems.

The software projects that were investigated have

displayed similarities and differences. Several differencesI were observed between the systems studied:

55

- Management Organization
- Maintenance Organization
- Computer Hardware
- Software Languages
- Unique Mission Requirements

Each of the three groups of weapon systems is managed by a

different functional organization:

Ground Radar Systems - Headquarters Strategic Air
Command (HQ SAC)

Communications - Air Force Communications
Command (AFCC)

Avionics (F-ill) - Air Force Logistics Command
(AFLC) through Sacramento Air
Logistics Center (SAC ALC)

Each functional manager has a different philosophy

concerning how software maintenance functions are to be

handled. AFCC provides software maintenance functions

through a centralized software development and test center.

This facility shares management and technical expertice for

performing software maintenance on communications computer

systems. HQ SAC has three approaches to accomplishing

software maintenance. The first approach is to embed

software maintenance tasks into a contract for complete

system operation and maintenance. The second approach is

for HQ SAC to perform the software maintenance tasks

internally. The third approach is to formulated a tenant or

support organization to perform software and hardware

support functions. AFLC delegates system support of weapon

systems to one of the Air Logistic Centers (ALC). Within

each ALC, the engineering division is responsible for

supporting software maintenance functions. This support may

56

be in the form of an inhouse or contractor provided work

force. As a result of the differing management and

workforce organizational structures, there are several

different approachs taken towards to managing and

performing maintenance functions. These variations were

observed by noting differences in local interpretations of

Air Force regulations and differences in contract software

maintenance tasks required of contractors.

Such variations in the management of software support

appear to be due to the unique and specialized missions of

each weapon system. The specialized missions require unique

and sometimes one-of-a-kind computer systems to integrate

with one-of-a-kind weapon systems. From the systems

observed, a vast range of computers were being utilized.

Large main frames such as CDC CYBERs, and IBM 360/370's are

being used to support ground radar systems. Mid-size

machines such as Burroughs and Data General Nova are used

for communications applications. Special purpose AN/AVK-6

are used to support general navigation and weapons delivery

within avionics weapon systems. The 2resence of different

computer systems has caused a proliferation of programming

languages used to build the software. Within the thirteen

systems studied, over eight different languages were being

utilized.

The specialized mission requirements require different

levels of software function complexity. For example, the

57

FB-111 navigational computer performs a limited set of

navigational operations using approximately 250

instructions; where as. the PAVE PAWS phased array warning

system utilizes over one million lines of code to provide

SLBM warning and attack characterization.

Many of the wide variances that were found from this

study are a result of the research philosophy used for

choosing the weapon systems to be studied. There was an

intentional attempt to look at a representative sample of

systems so that a comprehensive perspective of Air Force

software maintenance could be attained.

Even though there were many differences between

systems, there were also numerous similarities. For

example, computer systems are consistently used to fulfill

the same weapon system function, that is, to act as the

brain or controller of the hardware.

Additionally, the computer resources have been acquired

in the same manner, that is, as a component of the weapon

system acquisition. As a result, the software has been

developed by a contractor under Air Force direction and

management. This development typically undergoes the

standard Air Force configuration management, verification

and validation, and operational test. evaluation and

acceptance phases. Software life cycle planning is also

accomplished using a common set of regulations and

procedures.

58

I W .- -n

Each of the weapon systems that were studied, required

the computer resources to provide real time data processing.

As will be discussed in greater detail later. this has

caused each computer application to be faced with high speed

response requirements. memory restrictions, and reliability

concerns. To meet the speed and efficiency requirements,

assembly languages are often used to develop the software.

Of the software applications investigated, assembly

languages are used a high percentage of the time. as shown

below:

Assembly - 62 percent
Jovial - 12 percent
Fortran - 10 percent
Unique Languages - 18 percent

Common processing requirements are shared by computer

resources because software performs a critical role in

supporting the weapon system.

As also found by the BDM study (Ref), the software

maintenance environment of each system studied has a

similar structure. Management methods and programmer tools

are used to complete maintenance tasks as outlined in Figure

2-9. This is in a large part due to Air Force and DOD

policies, procedures and standards which outline

configuration management and software development

requirements.

Because of the diverse characteristics of each weapon

system, it is sometimes difficult to even categorize the

studied systems into the general categories of avionics,

59

communications, and ground radar. Yet, based on common

development, processing, operations and maintenance

philosophies, there is rationale for categorizing weapon

system software as a single application. This evaluation

becomes increasingly clear when weapon system software

projects are compared with other Air Force data processing

applications and especially true when compared to business

and scientific processing of non-defense related

applications. Real time processing requirements, use of

assembly languages. software reliability concerns, and

similar software support facilities give weapon system

software applications commonality.

HYPOTHESI The current level of maintenance costs can
be estimated

As discussed earlier, software maintenance tends to be

controlled as a function. This entails the dedication of

resources in the form of personnel and computer components

to complete maintenance tasks. The resources are assigned

to the organization which has the software support

responsibility. Accounting for these resources is done on

a limited basis. When the responsible organization is a

contractor, resource commitment accounting can be found by

inspecting the contract statement of work (SOW) or the

contractor's proposal. Depending on the type of contract

which is used, further resource costs can be estimated

through periodic work break down status reports. One

problem that was encountered in estimating actual resource

6o

expenditures to contractor maintenance, was breaking out

software versus system maintenance resource expenditures.

The majority of contracted software maintenance efforts are

embedded within a total system maintenance contracts. So in

order to win the competitive bid of system maintenance,

contractors will utilize personnel and other resources to

complete both system and software maintenance tasks making

it difficult for Air Force managers to identify actual

software maintenance costs. Thus, total software

maintenance costs were not readily available for this study.

Estimations of costs were made by reviewing the available

contracts, and expense reports.

When the responsible maintenance organization was the

Air Force, resource expenditures could be identified with

less difficulty. The cost of software maintenance-support

computer resources was found by reviewing purchase or lease

agreements. In a few cases this approach was not feasible.

On some systems, software maintenance is not performed on

off-line computer rosources; maintenance is performed on the

target machine during non critical time periods. Personnel

costs were estimated using current manning multiplied times

current salaries. Administrative, support and travel costs

were obtained from the current fiscal year budget. Even

though these expenses could be roughly estimated through

this study, there appeared to be no attempt to collectively

monitor and control these expenditures.

61

*~
7.,

RESOURCES 45

505

ADMINISTRATION & TRAVEL

Figure 4-1. The Software Maintenance Dollar

The Figure 4-1 summarizes the way resources are

committed to the software maintenance function. Maintenance

costs estimates were ranked in order of magnitude. Even

though the size of resource expenditures varied, there was

relative agreement as to the ranking of the categories of

maintenance costs.I The cost relationships held true for

systems requiring 5 to 50 personnel to complete software

1 Rank association was verified using the Kendall coefficient

of concordance as demonstrated in Appendix C (The Chi Square

Distribution Table was used to establish the P value to be

greater than .1).

62

IL!

maintenance functions. The largest variances were seen with

systems that are in remote locations. In these cases,

personnel and travel costs tended to be higher. With

systems requiring fewer structure maintainers, computer

resources costs tended to be the dominant factor.

HYPOTHESIS .1 - The value of the following variables is a

function of system age:

a. Size of program

b. Software reliability

c. Man years of maintenance workload

When the majority of systems are deployed, memory is

utilized at 90-95 percent because of the influence of

acquisition on system design. The computer product is

designed and developed to meet the current functional

specification only. To minimize system costs. software is

developed to maximize the usage of hardware. Thus, when

systems enter the maintenance phase there is little room for

software growth. At this point, all software changes must

be carefully considered. Before any significant new

software additions can be made, some portion of the current

software baseline must be deleted. Most software projects

show about a 5 to 10 percent exchange of program code during

the scheduled version change. This statistic more

accurately measures the growth of software with respect to

time.

When the system goes operational, the software is

subjected to a large array of conditions not tested during

63

development. Because of this situation, a relatively large

number of errors are detected during this time period. As

these errors are corrected, the system establishes stability

and the software gains greater reliability. It is the

general opinion of software maintainers that software

reliability increases the longer the system is operational.

From the date that the weapon system is initially

deployed, performance requirements of the system begin to

change. As the weapon system ages, modifications are made

to keep up with these requirement changes. Sometimes these

system modifications take the form of software function

enhancements. Eventually, the system can no longer be

altered to meet mission requirements. and is replaced by a

new system. As the system approaches replacement, both the

hardware and software configurations are held constant;

Changes are no longer cost justified. Figure 4-3 presents

the expenditure of man hours to support software changes

over the system life span. The initial expenditure of man

hours is dedicated to

1) handling the transition of software from

development,

2) establishing the software maintenance facility and

management procedures, and

3) correcting detected errors during initial

deployment.

The expenditure of software maintenance man hours levels as

the software and system stabilizes. As the reliability and

64

,_-w -. -- -- 'r -. . - J,-.-.r- ..

Maximum

MEMORY
SIZE

Deployment

TIME

Figure 4-2. Software Growth Over Time

Figure 4-2 demonstrates this reported growth trend over

time.

quality of the software increases, the number of man hours

gradually decreases until software changes are discontinued

and the system is frozen. Both the BMEWS and AN/FSS-7

systems are currently frozen.

HPHIS A - There is a relationship between the percep-

tions of the current state of several fac-
tors and the level of maintenance effort.

Figure 2-9 presents the management and programmer

influences on the maintenance process. A series of

questions were designed to investiate the factors which

affect the number of maintenance tasks which are identified

and the amount of time needed to complete those tasks.

65

..

MAW HOURS

II

Deployment System Freeze

TIME

Figure 4-3. Level of Maintenance Workload by Time

Responses to Section III, Question 3 of the questionnaire

(Appendix 1) have identified four major factors which

influence the level of maintenance effort:

1. System age

2. Code and documentation quality

3. Experience of maintenance programmers

4. Level of user enhancements

These factors were identified by asking software

maintainers to rank the factors which most affect the level

of software maintenance workload. Analysis of responses

(Refer to Appendix C-Problem 2) pointed to the factors

listed above. Additional questions were utilized to

describe the relationship between these factors and

maintenance level of effort. Figure 4-4 illustrates the

66

.-- j -- - ---- -

causal relationships which were established as a result of

the further questioning. The answers to the questions

supporting Hypothesis 3 established that maintenance man

hours tend to decrease as the system gets older. Related

results explained the role that software reliability has in

affecting the maintenance workload. Reliability is only one

software quality measure which affects maintenance. Indeed,

from the viewpoint of software maintainers, reliability is

the most significant measure of program code quality. The

quality of documentation can influence the amount of time

programmers need to understand program code, analyze

solution alternatives, and implement required code changes

or additions. As these program quality measures are

improved the amount of time needed to accomplish maintenance

tasks is diminished.

Software support personnel generally agree that

knowledge and experience with the weapon system, the

software maintenance facility, the application software

code, and local standards and procedures greatly increases

the productivity of maintenance maragers and programmers. A

knowledgeable and experienced person can accomplish assigned

tasks in a shorter time period. As knowledge and experience

are gained, the significance of this factor is reduced. For

*1 example. a programmer with ten years of system software

experience would not have a significant advantage over one

having eight years of experience. Yet a programmer with two

years experience would typically be much more productive

67

CODE AND
DOCUMENTrATION
QUALITY

E~ERIENE OF -LEVEL OF
MAINTENANCE SS~ G

PROGRAMM9ERS EFFORT

{t

LVLOF USER

Figure 4~-4. Factors Affecting the Maintenance Workload

than one having six months experience.

Of the four factors identified, the number of user

enhancement requests appeared to influence the maintenance

workload the greatest. Indeed, backlogs of user enhancement

requests are often used as the basis for identifying

software maintenance deliverables in the contract statement

of work or for justifying additional personnel and computer

resources. Even though user enhancement requests are a

major cause for maintenance tasks, only a limited number of

these tasks can be completed because of system and

organizational constraints. As detailed earlier, computer

68

memory limits the number of additions that can be

implemented to only those that can replace lower priority

functions. The number of available software maintainers

also limits the amount of work that can be accomplished. As

a system enters the operational and maintenance phase,

management establishes a shop of personnel that will provide

software maintenance functions. At this time management

makes resource commitments to maintenance based on their

best predictions and judgements. The level of these

commitments then varies as the system evolves. When a user

requests software enhancements, these tasks must be handled

by available resources. As a result, management verifies

and prioritizes change requests. The software support shop

then takes a group of the highest priority enhancements and

incorporates these requests into a software baseline version

change. This causes a certain number of requests to go

unanswered until either the priority is large enough or

resources are available. If the backlog of high priority

requests becomes too large then management attempts to

increase the number of programmer personnel or acquires
additional automated tools. But both these management

efforts have limitations. For as Brooks reports in the

Mythical Iatn Month, adding resources to software development

project does not always increase productivity. For one

thing, the new personnel would be inexperienced with the

system and of little immediate assistance. In fact,

training these new personnel would take away from the

69

. II. ' ilkUI Il

current experienced work force. Additionally, software

maintenance managers agree that only a limited number of

changes can be made within a software version change. Too

many changes tend to increase the occurrence of detected and

undetected errors. Because of these limitations, management

usually bites the bullet and lives with request backlogs.

Thus software maintenance personnel manning levels usually

stay consistent after the system and software stabilizes.

OBJE.C1LYE _ Summary*

The responses from the interviews have established a

basis for defining the relationships between a few key

factors and the level of maintenance costs within Air Force

systems. It was discovered that maintenance costs are based

on the level of resources that are committed to maintenance

tasks. (Refer to Figure 4-4) The commitment of resources

is influenced by four major factors: experience of

programmers, system age, documentation and program code

quality and the level of user enhancements. Interviewed

personnel agreed that these factors either affect the amount

of maintenance workload or the ability to complete the

workload. It was found that the strength of these

relationships vary over time. That is to say, the further

the code and documentation quality is diminished, the

greater the amount of work that must be expended to complete

maintenance functions. The same situation is true of system

age and the experience of programmers. As the number of use

70

J. . .A...t- ,

enhancements increases so does the level of the maintenance

workload.

Cause Excess Resource ommitments Software
Maintgnance DI WepnSytm

HY H 1- Software maintenance is defined differently
by different organizations

Of all the systems that were investigated during this

study, all but one agreed on the functions that are

performed during the software maintenance process. In fact

these systems tended to similarily rank the functions in

relation to the total number of maintenance tasks. 2 The

responses to Section II, Question 2 are summarized below:

Mean
ankin Percentae

1 Providing new software 39
functions

2 Removing software 28
defects

3 Tuning the software 17
for greater efficiency

4 Providing greater system 11
interfaces

5 Other functions 5

Providing new software enhancement functions is seen to be

the most significant maintenance activity. During the

2 The Kendall coefficent of concordance was utilized in

conjunction with a chi square significance test to evaluate

rank association of responses to Section II, Question 2 (as

shown in problem 1 - Appendix C).

71

questioning, an additional maintenance function was

identified. Software maintainers periodically spend time

investigating and analyzing reported error conditions that

were not actual error conditions. Handling these false

"wolf reports" is seen as a necessary service in order to

insure a high degree of software credibility.

HYPOTHESIS - During system development, software quality
is not a primary consideration

When trying to identify the critical measures of

software quality, software maintainers tend to agree that

software reliability is the most visible. Software error

occurrences often affect the entire weapon system

performance. For this reason, a significant amount of time

and resources are expended on software test and integration

during the software maintenance phase. In general, software

maintenance personnel assert that this same concern for

software reliability is usually not adequately considered

during the initial software development. Indeed, several

software development experiences tend to support this

assertion. For example. the software for IEMATS was allowed

to be developed in a "hodge-podge" manner. The contractor

was permitted to integrate several software modules from

other systems in order to reduce software development costs.

This resulted in a software product which inherited the

combined problems of the previous systems. Inadequate

software documentation, and poorly structured program code

72

III I-p V - "

were only two of the problems which later greatly affected

software maintenance personnel. Another case in point was

the development of the Programmable Indicator Data Processor

(PIDP) communications system. Because of separate

developments, the software was delivered several months

before the hardware was available. Thus, there was limited

means by which the software could be adequately

operationally tested. So when the hardware was finally

delivered, the software developer had long been paid off.

When the Air Force attempted to integrate and run the

hardware/software system, it was found that the software did

not execute. And even when fixed to do so. the software did

not perform the functions specified in the software

development contact. In this case, the software maintenance

team was given the responsibility of reworking the software

to meet the original systems functional specification.

The role of correcting problems created during the

development phase is not an uncommon one. Software support

personnel consistently regard the modified program code as

of being of better quality. One reason for this situation,

is that the code is developed consistent with local

standards using existing maintenance programming tools. The

experience gained working with the new section of program

code coupled with the enforcement of local maintenance

standards tends to make the code more maintainable later in

the life cycle.

73

This study found that approximately 30 percent of

software maintenance activity involved spent correcting

errors created earlier in the life cycle. The rising costs

of performing maintenance justifies reconsideration of

several software development policies and procedures.

Possibly by spending additional resources during system

development, a higher degree of software reliability and

maintainability could be attained.

HIPTiIS -. - There does not exist standard maintenance
programming methods, procedures, or goals

There are a series of DOD and Air Force regulations and

standards which are directed at controlling the state of

delivered software products. Areas which are specifically

identified and controlled during the software development

phase are configuration management and system/software

documentation requirements. The same level of management

policy control has not been developed for the maintenance

phase of the software life cycle. Section II, Question 15

and 16 were directed at discovering the standards and

procedures for performing code modifications. Responses to

these questions indicated a wide diversification of methods

which are used by the software maintainers of different

weapon systems. Some systems tended to utilize Air Force

software development standards; other systems emphasized the

use modern methods of software development and testing. The

Air Force Communications Command (AFCC) has realized this

situation and is attempting to reduce the impact by

centralizing the software maintenance efforts Of

communications systems. Preliminary work has been done to

manage and program these Systems using a common approach.

Yet, further standards are needed.

HQ SAC is also attempting to manage this pridicament.

HQ SAC has recognized that some software systems are

deficient in many quality attributes. Yet, managers are not

sure what is an acceptable level or standard by which

software should be maintained. In attempt to answer this

question, HQ SAC is developing an Request For Proposal CRFP)

to have a contractor study a model software system. The

purpose of the study will be to develop acceptable

documentation and program coding standards for maintaining

software. The contractor will also estimate the costs of

converting the software from its current state to that of

the established standards. Current conversion estimates are

high.

HYPTHI L . - Personnel assigned to software maintenance
tend to be insufficiently trained and have
limited software support experience

Depending on the weapon system. either contractor or

Air Force personnel are responsible for completing software

main~tenance tasks. Personnel f rom both types of

organizations agree that it takes a special combination of

knowledge and experience to make an effective software

maintenance programmer/analyst. As Figure 4-5 illustrates.

75

SYSTEM

SOFTWARE FACILITY PROCEDURES

SOFTWARE

Figure 4-5. Software Maintenance Expertise Areas

the programmer/analyst must obtain expertise in four areas:

the weapon system, software application, the software

support facility, and local standards and procedures for

completing maintenance tasks. System knowledge is often

referred to as knowledge of the software application

environment. By acquiring at least general knowledge of the

system. the software maintainer will develop an

understanding for system requirements and will be more able

to interface with change requests to assure that

requirements are sufficiently met. When the software

support programmer goes through the process of making

initial changes to the software much valuable experience is

76

gained. The programmer is subject to working with the

internal and external software documentation, representative

program logic and the programming language. As the

programmer completes maintenance tasks, a point of reference

and familiarity is developed. As a result, the programmer

can anlyze software problems and solutions having some basis

for working with the software. It's one thing to know what

changes need to be made. another to be able to develop and

test them. Experience using the software maintenance

automated tools gives the programmer the ability to

accomplish code modifications. Just as a carpenter requires

special knowledge of each of his tools; software maintenance

personnel need to be able to operate the text editors,

debugging packages, dump routines, assemblers and compilers

and other software packages available in the software

support facility. Knowledge of local standards and

procedures allows the programmer to apply the expertise

gained in the other areas to completing assigned maintenance

tasks. It takes learning a combination of these four areas.

to develop an effective software maintenance

programmer/analyst.

Expertise with these four areas is usually developed

through an inhouse training program coupled with hands-on

experience. All the systems investigated had a thorough

training program defined for developing newly assigned

personnel. The major purpose of the training is to

gradually impart system and software knowledge and at the

77

L , , I, - ' ' , - , _ ,, - ' - - ." 1 l :.. . . . , ,.=

same time to enforce acceptable means for accomplishing

software maintenance tasks. After the new personnel

complete the training program. they are usually assigned to

be an apprentice of an experience programmer/analyst. The

new programmer is assigned small tasks and directed to

shadow the actions of the experienced individual.

Eventually. the new programmer is given tasks with

increasing importance and with decreasing guidance. The

personnel within each system agreed that the process of

grooming experienced software maintenance

programmer/analysts takes between 8 to 18 months to

complete. The exact-developmeht time depends on educational

background, job experience and aptitude to learn

applications and software concepts. Because of the

diversity of systems, much of the learning necessary can

only be accomplished on the job.

Managers of the systems interviewed believe that

quality, experienced personnel are the key to the completing

software maintenance tasks. Achieving this experience is a

difficult and expensive undertaking. The personnel within

Air Force software maintenance shops average less than 2

years experience working on any software support project.

For most personnel. their current assignment is their only

experience with software support functions. Turnover of

management and programmer personnel is estimated to be just

over 3 years. On the other hand, contractor personnel

experience averages almost three times that of the Air

78

ILL& , , . ; ,. . . -- , a

For ce. As a result, the Air Force pays 65 thousand a year

for the average contractor software maintenance individual.

This fee is much higher for remote software support sites.

Current Air Force policy does not enable Air Force

software maintenance shops to keep needed experienced

personnel. Obtaining the needed level of software support

experience takes longer than most other applications. Just

as maintenance personnel have gained the management and

programming skills equivalent to their contractor

contemporaries, they are transferred or promoted. The time

and expense of constantly training new personnel, detracts

from the amount of software maintenance work that can be

accomplished and drives up the cost of supporting tl~e

software through the life cycle. The loss of experience is

particularly acute at management levels. For example, in

the case of contracting software maintenance tasks. Air

Force contractor negotiations tend to be one sided in favor

of the contractor. The contractor holds the knowledge,

experience and skills and can strongly influence the

identification and pricing of maintenance tasks. This

situation is referred to as major league-minor league

contract negotiations. The Air Force personnel do not have

the experience or technical knowledge necessary to keep the

contractor in check. The hard work and perseverance of the

Air Force may win some concessions but the contractor wins

overall. Once again, level of personnel experience

influences the price tag of software support.

*1 79

,A..- aft-- &__t

H T- There is a common set of problem conditions
which plague the software life cycle of
Air Force weapon systems

The hypotheses that were developed under this objective

were aimed at identifying specific conditions which cause

unnecessary expenditure of resources to maintenance

activities. The purpose of these hypothesis was to

investigate the extent to which potential problem areas

apply to the different weapon systems studied. Table 4

summarizes the responses to Section III, Question 2. This

question listed all the potential problem conditions

reported in the software maintenance of business

applications (Ref 52). The table shows the range of

responses by indicating the maximum, minimum and medium

values. The purpose of this question was to gain a

comprehensive viewpoint of which situations cause

maintenance management and programming difficulties.

Responses that had a median value of minor problem (score

value 3) or higher were categurized as a problem area. Six

problem areas were identified:

1. Turnover of maintenance personnel

2. Quality of application/system documentation

3. User demand for enhancements and extensions

4. Quality of original program development

5. Lack of user understanding of application

6. Storage requirements of system programs

Ii
IiIi

so

.. ..-

Table 4. Problem Area Response Description

None at All

Somewhat Minor

Minor Problem

Somewhat Major

Major Problem

5 4 3 2 1

a. Turnover of maintenance
personnel

b. Quality of application
system documentation

c. Changes made to system
hardware and software

d. User demand for enhance-
ments and extensions to
application systems

e. Skills of maintenance
programming personnel

f. Quality of original pro-
gramming of application
system

g. Number of maintenance
programming personnel
avail able

h. Competing demands for
maintenance programming
personnel time

i. Lack of user interest
in application system

J. Application system run
failures

k. Lack of user under-
standing or application
system

81

None at A17

Somewhat Minor

Minor Problem

Somewhat Major

Major Problem

5 4 3 2

1. Storage requirements of
application system programs

M. Processing time require-
ments of application
system programs

n. Motivation of main-
tenance programming
Personnel

o. Forecasting of main-mk,
tenance programming
Personnel requirements

P. Maintenance programming
productivity

q. System hardware and
software reliability

r. Data integrity in
application system

s. Unrealistic user
expectations

t. Adherence to program-
ming standards in main-
tenance

u. Management support of
application system

v. Adequacy of applica-
tion system design
specifications

w. Budgetary pressures

x. Meeting scheduled_______

committments

82

II ILL.

The impact of each of these problem conditions has been

discussed in detail within an earlier hypothesis. The

recommendations offered in Chapter V will focus in on

reducing the impact of these conditions on software

maintenance costs.

OB1 LJCTIVE a mmmary
This section has identified a series of Air Force

policies which cause excess resources to be committed to

software maintenance tasks. The turnover rate of Air Force

personnel causes a constant deficiency of experienced

managers and programmers. In the past. the system

development phase has produced software which has a low

level of software reliability. Software is often delivered

without the needed documentation to support the program

code. Lack of maintenance standards creates difficulties

for the transition of software from development to the

maintenance phase. For if software maintainers cannot agree

on the level of documentation, and code quality needed then

software developers will have a hard time delivering an

acceptable software product. The distributed approach to

organizing the software maintenance function within the

operational-using command causes the impact of these

policies to be greater. Personnel expertise is isolated on

separate projects. Different organizations tend to support

different philosophies for completing software iriintenance.

83

- : -- -v.- • " . ,. -- , _ _... , -,, .. , ., - ' .

The Air Force has made incredible progress with

controlling the explosive emergence of software support as a

major management concern. The third thesis objective will

investigate the progress that has been made to date.

OBJEC.TIVE~ 3. I.2 .Qevel.p Policyj Recommendations .Ig Improve~
Maintenance Su~r DQI Eitiniand Fuur
5oftare Programs

HYPOTHIS~~ Steps are being taken to improve the main-
tenance of weapon system software

Several positive steps have already been made to

improve software maintenance with Air Force weapon systems;

Several new developments are trying to improve the process

even more. The Air Force has long realized the importance

of having a total systems approach to maintenance. The

functional manager recognizes that, a well maintained weapon

system is the product of an integrated process of hardware.

software and the personnel and equipment to support both.

As part of this systems approach, software maintenance is

organized within a distinct and separate orgnnization. The

approach of assigning a separate organization to handle

maintenance responsibilities has been recommended by several

studies as a method to increase personnel and resource

productivity (Refer).

Detailed configuration management programs involve Air

.1 Force decision makers with authorizing and validating the

maintenance tasks which are to be accomplished. ThisI control coupled with scheduled implementation of authorized

changes has stopped the "quick change" syndrome of

accomplishing software maintenance. As a result, software

users. managers and programmers are sure of the current

sof tw are conf igura ti on. Software reliability is better,

also.

Automated tools are being used by programmers and

managers to accomplish software maintenance functions that

have long been done manually. The Air Force is utilizing

these tools in increasing degree. The current trend is to

create a software maintenance facility or environment to

support weapon system software. The philosophy of these new

maintenance facilities is to integrate a comprehensive set

of tools with management and programming methods. Science

A ppi ca t io ns Inc. has developed a metric-directed

maintenance environment using this philosophy.

New research and development projects promise to

further assist managers and programmers with maintenance

tasks. Development of the ADA programming language and the

ADA development environment will provide a common software

tool for the various Air Force weapon systems. As mentioned

earlier, the need for efficient real time processing on

different specialized computers. 1tas caused a wide variance

of programming languages. This divlersity is one of the road

blocks stopping further advances in programmer productivity.

Introductin to ADA a common programming language will

provide a framework for developing standard programming

conventions and methods. DOD and the Air Force have high

.15

expectations for this avenue of work.

Rome Air Development Center (RADO) has sponsored

several software quality metrics research efforts The

purpose of this research is to identify measurable software

qualities which can be attained during the development of

software. McCall and Walters (Ref 62 & 63) have defined a

set of software maintainability metrics. These metrics

describe software attributes which allow software to be

corrected and updating much easier. There are currently

plans to require contractors tn attain these maintainability

attributes during software development. Future use of these

concepts may insure a higher quality software product.

On a large scale. revolutionary new methods of

developing and maintaining software are being researched.

Some of the major efforts are:

- Requirement Specification Languages

- Program Correctness Proofs

- Automatic Programming

Requirements specification language is a short hand

method of stating a user requirement (Ref 7,84,85 & 90).

The language can be directly interpreted into executable

code. As user requirements change, the requirements

language description can be modified, thus changing the

executable code. By using this type of tool, "adaptive"

type maintenance efforts could be automated. Much work is

-1 needed to apply current requirements languages to the

efficiency needs of weapon system software.

86

AD-A124 758 A STADY 0F THE SOFTWARE MAINTENANCE PROCESS OF AIR
FORCEWEAPON SSEMStU AR FORCE INS OF TECH
WRIGH-4PATTERSON AFN OH SCHOOL OF ERAINEERINO

UNCLASSIFED P AOC EC 82 AFI A CSMA/820 5 0/ 912 . NI

EhEEEmommoiEEEmohmhhEmhEEEEEmEEEohhhEmhEEE
EEEEEEmhEohEEE
EEmmhEEEEohmhhE

1.0 li6L 1 .
U66 1 1 2.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANDARDS-1963-A

Li
II"'-

Willi-

.. ."" "'* 'v''' W':'jB ''"

_

IL

Program correctness proofs are a mathmatical method of

proving program validity (Ref 38 & 41). Correctness proofs

could be used during the design and coding stages of

development to reduce the occurence of errors. This

approach promises to minimize the amount of "corrective"

maintenance tasks. Work is underway to apply current

correctness proof concepts to complex programs. Further

development of these concepts is required before it becomes

cost and time effective to implement these methods.

Automatic programming is a programming method which

allows the computer to program all low level tasks (Ref

5,33,37 & 103). This approach leaves the programmer to work

at a very high level of program specification. If properly

developed, this programming method could automatically

implement efficient well tuned code for all low level tasks,

thus, greatly reducing the level of perfective maintenance

tasks. Prototype automatic programming languages have been

developed for very specialized applications. Because of the

large amount of computer resources which are required, this

method has not been applied to general software development

and maintenance applications.

2PTIS - Analyzing maintenance activity data would
assist with managing the maintenance process

Previous studies of the maintenance process (Ref 52.80-

82 & 97) have proposed extensive maintenance activity data

collection. The purpose of these proposals is the

development of data base history of maintenance successes

87

Ii

and failures. Statistical analysis of this information

could then be used by future managers to select the proper

measures to complete maintenance tasks at lowest cost.

Several questions were asked of software managers in the

attempt to investigate the application of these proposals

(Section IV, Questions 1-6). The questions attempted to

identify additional management data which would assist

managers with controlling the maintenance process. The

large variance in responses showed that there was little

agreement of what data should be collected or how the data

should be used. Yet there was unanimous agreement that

further maintenance management indicators would be helpful.

Another point which was shared by the interviewed managers,

was that the collection of activity data should not place a

significant burden on the personnel performing maintenance

tasks. Experienced personnel are already saturated with the

control measures of configuration management and current

tasks without an additional workl'oad. A recommendation to

adapt a maintenance activity collection and analysis scheme

is made in Chapter V. This recommendation attempts to

produce additional management information without burdening

programmer/analyst personnel.

HBYPOHEIS 3. - Current management and programmer personnel
have viable suggestions for improving the
maintenance of existing systems

Several interview questions (Section III, Questons 4-7)

were aimed at soliciting suggestions for improving the

88

.1I am "

A 0...:

software maintenance process. The answer that was given is

that they are putting their ideas to work everyday. In

fact, many of the advances that were discussed in hypothesis

1 of this section were developed and tested by in the field

software maintenance personnel. Some obvious solutions for

improving the software maintenance process are not Possible

within the realm of current DOD and Air Force policies.

Changes to those policies and discussion of those solution

methods will be present in Chapter V.

OBECTIME i .SMmmA~r.

The purpose of this thesis objective was to identify

methods which are being developed or being used to improve

the software maintenance process of Air Force weapon

systems. Application of additional methods beyond those

being used or developed were also investigated. The

responses received coupled with the information obtained

from the first two objectives provide the basis for the

policy recommendations presented in the next chapter.

89

V. Summary and Recommendations

The purpose of this research effort was to improve the

software maintenance of Air Force systems by studying

current management and programming methods used by various

systems. The success of this study is based on the

perceptions and viewpoints obtained from the key personnel

interviewed at each of the sampled systems. The findings

outlined in Chapter IV present a descriptive picture of

those systems which were investigated. The small sample

size of this study limits the amount of anaylsis which can

be extended to all weapon systems. Yet. the major findings

of thi s study w ill act as an indi cator of sof tware

maintenance conditions and practices in other Air Force

systems. This chapter summarizes the major findings of this

research. compares these findings to other systems, and

presents guidelines for improving software maintenance. The

accoplishment of the established thesis objective is

summarized in light of these findings and recommendations.

SummA AfMjr Findings

The following research findings were formulated while

evaluating several experimental hypotheses as the means of

accomplishing the thesis objectives.

1. The basic elements of the software support
environment differ between Air Force weapon
Systems.

2. Software maintenance programmers provide
specialized software support functions.

90

3. System development efforts have not produced
quality software products.

4. Software maintenance methods, standards, and
goals are not adequate.

5. There is limited management of software
maintenance costs.

6. There is a trade-off between efficient and
effective software maintenance efforts.

These findings are based on the study of Air Force

communications, avionics and ground radar sysems which have

been operationally deployed for 1 to 20 years. These

findings may not apply to computer software which is

currently being developed or just recently delivered. These

findings are an accumulation of the most significant

conclusions formulated from the evaluation of the thesis

hypotheses discussed in Chapter 4.

environmental iffer betkigen AIX Fgc .weapon sytes The

specialized missions of each Air Force weapon system,

usually require one of a kind, real time hardware and

software configurations. This causes the usage of a wide

variety of assembly languages to attain the required

efficiency with the different weapon system hardware

components. The variety of hardware and programming

language usage causes the utilization of various computer

vendors software support tools. Different weapon system

Missions, different hardware. varied programming languages

and different types of software maintenance tools all

91

contribute to making the software support environment

different from one Air Force system to another.

To support the operational needs of the system. the

maintenance of the software is closely managed by different

system functional managers. A result of the differing

maintenance management and workforce organizations is a

varied approach to managing and performing software

maintenance functions. Thus. when personnel are transferred

into the software maintenance environment of a particular

weapon system, the process of performing the general

software support functions is consistent with those

explained in conjunction with Figure 2-9; the exact

management and programming elements which apply to

completing these functions will differ between systems.

spec12.lized~ Z.ftw.ar suppo.Qrt~ .funcl.tions, Computer resources

are required to fulfill similar weapon system functions;

they act as the brain or controller of the system hardware.

Because of this key role, a high degree of reliability and

real time responsiveness is required of the software. As a

result. software maintainers are subject to similar

constraints. All software changes must be approved by

several Air Force organizations and review boards. A

majority (over 65 percent) of these changes are made using

an assembly language. To insure reliability and performance

requirements, the software code are tested separately and

:1 92

Ida
-- -- j

with the integrated system. System tests are usually

performed in a simulation environment and then during an

operational test and evaluation. The process of approving,

developing, and testing is accomplished for four major types

of maintenance tasks:

1. Providing new software functions

2. Removing software defects

3. Tuning the software for greater efficiency

4. Providing greater system interface capabilities

Accomplishment of these diversified tasks takes a

special combination of knowledge and experience. An

effective software maintenance programmer/analyst must

develop expertise in four critical areas: the weapon

system, the software application, the software support

facility and local standards and procedures for completing

maintenance tasks. Obtaining personnel with this level of

qualification is difficult undertaking. The Air Force

either pays to develop inhouse experience through training

programs or pays a contractor to provide this experience at

about $65,000 per programmer/analyst.

3. System development efforts have n=ot due

Cjjjity software 2rg L. Software maintenance personnel

agree that software reliability is the most significant

software quality measure that influences the amount of

maintenance tasks. This study found that nearly 30 percent

of the current maintenance workload is attributed to the

93

_J I ! .. . --- "" ..

correction of errors that were created earlier in the

software life cycle. The quality of the software

documentation is also a critical issue which affects the

level of maintenance workload. When evaluating the quality

of the internal and external software documentation, and

interviewed personnel from each system found fault in some

portion of the documentation. The insufficiencies in

software reliability and the level of documentation were

largely attributed to the system acquisition philosophy.

Evidently, the statement of work (SOW) which bound the

contractors to developing software modules, did not

adequately define deliverable software quality attributes.

As a result, the Air Force purchases systems with delivered

deficiencies. These deficiencies have to be corrected by

the maintenance staff of lived with through the life cycle.

The rising costs of performing maintenance tasks justifies

the reconsideration of where these required software

characteristics are implemented.

4. .aQftMar. maintenance methods,,. sa Bfl r.z.L. ..ar gol

A= =no .adequate. The application of software development

standards has varied from one system development project to

another. Additionally, the software development practices

vary between contractors. Even the software development

styles of separate programmers within the same contractor

organizations can widely vary. Plus. as new standardI methods of developing program code are establish old methods

:1 914

are used in decreasing levels. As a result, the conditions

of the software products and documentation varied between

the systems that were studied. Modern programming methods

and conventions were used in varying degrees in these

systems. It appeared that the trend of the observed Systems

was to extend the documentation and coding styles Used

during the original development. But when the original

conventions were considered inadequate, some systems

developed their own standards by which replacement code

would be developed and implemented. These new standards

seem to be based on modern programming concepts. as well as.

the software support beliefs of local experienced

programmers and managers. These standards are stressed in

training programs and some what enforced during program code

systems may be performing the same software support

functions but the software is maintained at different levels

of quality.

Most organizations have recognized the problem of

*inadequate maintenance programming methods, goals and

standards. There are several major efforts underway to

improve the current situation. Yet, the central question

that once again occurs is: what level of software quality

jis required? Once this illusive issued can be resolved, a

set of measurable software standards can be developed to

control software development at all stages of the softwareI life cycle.

'15

5. There i ±mIt.Sd mnageument Qf soft.ware .maintenance~

sAt.L. The yearly expense of providing software maintenance

fui~ction3 Was estimated to be in the range of $600 thousand

to $1.5 million depending on the system. The distribution

of where this money is applied was estimated by this study

to be as follows:

50 percent - Software Support Facility
45 percent - Personnel Salaries
5 percent - Administrative and Travel Expenses

These software maintenance expenses were not readily

available. They had to be extracted from contractor work-

breakdown proposals and progress reports, partitioned from

organizational budgets, and identified in purchase. lease.

and support contracts for maintenance support computer

resources. Personnel Costs were estimated relative to

current manning. Even though these cost estimates were able

to be formulated, there appeared to be no attempt to

collectively monitor or control these expenditures. Also,

software development Costs were not available. The reason

given for the lack of development Costs was that the

software was only one component of an entire system

a.'quisition and separate accounting of this component Was

not performed. Another reason was that the system was

usually acquired by another organization (Air Force Systems

Command).

The philosophy of recent DOD directives and Air Force

regulations has been to emphasize that computer resources

96

Id' I

(to include software) should be acquired and managed based

on life cycle costs. Yet, it does not appear that Air Force

management has collected the necessary cost data upon which

to make these types of decisions.

- fectiyg jsLf.A_&~ maiLten£a e11f I n or d e r to

effectively support the operational requirements of the

weapon system, several general policy decisions influence

how software maintenance will be managed and performed. For

example, the software maintenance efforts of several of the

studied systems are being managed directly by the functional

using organization. This management approach attempts to

get the personnel with the best system application knowledge

to support software maintenance tasks. In some caes, the

highest degree of the system knowledge and experience is not

found in the Air Force. Thus contractor services support

system and/or software maintenance functions. The decision

as to who will manage or perform maintenance is based on

which organization is best qualified to support the system

requirements through the life cycle. This philosophy often

causes software support organizations to be separately

located and managed. This decentralization causes

duplications of personnel and support equipment. Yet. the

importance of mission requirements cause cost effective

methods of performing maintenance to be considered second to

effectively supporting the system. Maintenance facilities

97

Il 7 : 7__ v - - - - ", ', n

of the future should strive to meet both goals: response

effectiveness and process efficiency.

Recommendations

Many efforts are being developed and applied to

increase management controls and programmer productivity

within the maintenance process. Johnson (Ref 40) states

that "productivity" is a function of selecting qualified

people. establishing and adquate working environment, and

providing proper management direction. With the explosion

of new computer applications, the demand for experienced and

qualified programmer personnel has exceeded the supply and

the gap is predicted to get larger. For maintenance

programming, qualified personnel must be developed on the

job. The working environments needed are obtained by

providing sufficient software tools and the procedures by

which programmers are to apply them. Management directions

takes the form of controlling the quantity and quality of

software configuration changes. as well as. how resources

will be committed to completing these changes. As

development and mnintenance workloads are increasing,

current software technology advances are improving the rate

of programmer productivity by three percent a year. Carlson

(Ref) observes that actions must be to either reduce the

maintenance workload or to increase productivity:

"The cost of continuing to use armies of program-
mers to develop software is very high. especially
during the maintenance phase of the life cycle.

98

I8 _.AA

There are two main alternatives. One is to in-
crease the productivity of software engineers so
that a team of fixed size can handle more com-
plicated requirements.

The other is to stop treati.g software as a fixed
product which is developed. -intained and
discarded; and begin to deveiop evolutionary
systems which adapt and become more sophisticated
over long periods of time."

On the basis of the research completed in this thesis,

several recommendations have been developed with the intent

of increasing maintenance productivity and reducing the

current workload. These recommendations specifically apply

to Air Force weapon systems of the general type surveyed.

These suggestions will not cure current maintenance

difficulties instantly. However, they will provide a

further means of correcting problems that will continue to

persist until some action is taken. The recommendations

outline methods for the:

1. Development of experienced software maintenance

personnel,

2. Management of system life cycle growth.

3. Development of maintenance standards,

4. Management control of maintenance resources. and

5. Further study.

Recommendations for accomplishing these goals are discussed

below.

1. Develop ent Qj experienced AoftwLJe maintenance

e The critical issued confronting maintenance

99

,..... - .

managers is how to develop and retain experienced personnel.

The Air Force has not adequately answered this questions.

Usage of a s escort J m might be a viable method of

developing the needed expertise. Ordinarily the Air Force

develops the system specifications and the contractor builds

the system. The level of knowledge of the system transfers

from the Air Force to the contractor and is never

reestablished. Contractors are paid to develop and maintain

systems and at the same time gain the greatest level of

knowledge and experience with the system. This leaves the

Air Force in a vulnerable position both at contract

negotiation and in adequately understanding the capabilities

of the software. The system escort team philosophy calls

for Air Force participation with software development as the

system is being developed by the contractor. This could be

done by assigning a group of Air Force personnel to the

contractor as "free" resources to be used with software

development. This basic concept is already being used with

contractors in other functional areas. This concept could

be extended to providing personnel to software maintenance

contractors. The result would be a group of Air Force

personnel which have gained a high degree of experience with

the system in the software arena. The next concern is how

to retain this expertise. Personnel which develop high

technical knowledge of particular software system will be

most productive on that system because of the vast

difference between weapon system hardware and software

100

elements. Two suggestions are offered for retaining

experienced personnel: loge perioQS~~ .assigmen .An

syltem- technicgal caee pathsL Longer assignments would

allow Air Force personnel to spend more time on the job

after developing experience. This would increase the

average productivity and decrease the commitment to large

and extensive training programs. Currently, once personnel

attain technical competence and productivity, they are

promoted to management. Contractors such as TRW, General

Dynamics. Raytheon. and Boeing have long realized that

retention of technical experience over time is a critical

concern. One method used by these companies is the

formulation of a technical career path. This career plan

allows personnel to progress in salary and grade and still

Perform technical functions. Even though some turn over is

essential to provide an influx of new ideas and skills, the

Air Force's technical software and systems experience could

be retained over the life of the system.

2. Manage~metnt Qf syte life~ cyl gro.gwth~. Currently,

systems are developed to meet Air Force specifications. The

software is one functional component of the system. The

software and corresponding hardware is developed to meet the

minimum functional specification. As a result, when systems

$ are deployed and enhancements are requested, there are few

available System resources to handle the increased

requi rem ent. This study showed that 40 percent of the

101

software maintenance tasks are enhancements. Implementation

of these enhancements is often limited by memory of speed

capabilities of the hardware. Knowing that software growth

is a fact of life, the Air Force should begin to plan for

this growth. One way this can be accomplished is to change

the 2hiligpbl Qf system ad software acquisitions. The Air

Force should develop specifications which require

contractors to develop systems which can be expanded to meet

projected growth requirements. Then once this capability is

established, proper control of growth will have to be

provided. The major instrument for controlling the level of

present enhancements is the limitations of available

resourcs. New functional enhancements can not be

implemented until an old functional capability is removed.

Resource limitations force priorities to be established.

Once the resources are made available through acquisition

planning, other mechanisms for limiting growth will have to

be found. Stricter configurations management is the obvious

solution; making it work is another.

3. .mf of mjiile- n Aa.ards. The

diversity of current approaches to developing and

maintaining software affects the quality of code and the

maintainer's ability to work with it. Current DOD and Air

Force standards are meant to be all-inclusive. These

standards do not reflect current advances in software

engineering practices. As a result the standards are

102

I IZ A ...I ! ...i ' : i

applied at the judgement of managers. An effort should be

made to redeve±oR .a rd jan guideliA whicn outline

minimal not maximal requirements. These standards should

reflect measureable software qualities which easily enable

maintenance tasks to be completed.

Much hope has been placed in the development of the

DOD common programming language ADA. It is believed that a

common programming language will provide a mechanism for

imposing some constraints to ensure proper language usage.

Indeed, the usage of ADA could result in the standardization

of the entire software maintenance facility, to include

standards and procedures. This type of commonality will

provide the structure for defining a common approach to

developing software and insuring quality. The standards

developed for current systems cannot be ignored. It is

unrealistic to think that a system which currently has one

million lines of code will be converted to another language.

So standards should be developed to apply to these systems

also. These standards would control the five percent

replacement code which is developed each year.

4. Mangement go f maintenance resources. When

systems are conceived there is contention for control of the

software maintenance function between the user command and

Air Force Logistics Command (AFLC). Both organizations have

an interest in performing the software support function.

AFLC has greater experience with providing maintenance

103

.ijj- A

functions for all types of Air Force material items to

include computer software. With this experience AFLC

believes that they can provide the more efficient software

support. The user command believes that more responsive and

therefore more effective control can be established if

management of the software support effort remains in house.

Mission requirements often dictate that software maintenance

be performed by the user command. As a result, many

separate organizations have control of software support

functions. One suggestion to reduce the impact of diverse

management control is to esals a ceta organization

which is responsible for establishing the software

maintenance environment. This organization would attempt to

share management and technical expertise between separate

systems. This organization would provide a focal point for

reducing duplicate expenditures of support resources.

At the local level management should provide a control

over maintenance expenditures. Managers should selectively

allocate resources to assist with software support based on

past proven performance. Currently, managers have only

their limited personal experience from which to draw from.

As suggestion for increasing the amount management data

available for making decisions is to develop~ a aneac

acti~tydat age.j By continuously measuring the presence,

magnitude, and performance of several factors in relation to

the required level of effort, a history of maintenance

productivity could be established. A statistical analysis

104

of this information could then be used by managers to select

the proper measures to complete maintenance tasks at lowest

Cost. A more basic recommendation for controlling software

maintenance expenses is an U~j. f coa

Ag_=Jj and an active management commitment for

monitoring these Costs.

5. F.urt.her stdy Software maintenance is a rapidly

expanding field Of study. Many authors believe that in time

software engineering concerns Will widely emphasize the

development of advanced practices for accomplishing

maintenance tasks. As of yet, relatively little study has

been accomplished in this area. Two suggestions for further

study of software maintenance as it relates to Air Force

weapon systems are summarized below:

Std j:, System/Software Specification. This study

would take a current system which is the conceptual phase

and develop an alternate system specification document

parallel to normal specification development. This

specification would bind the contractor to deliverable

software quality measures and provide system resources for

*planned software growth. It also would be interesting to

evaluate the cost differences between this approach and

current methods.

Study?,:, Maintenance Activity Data Base. This study

would design and implement a method of collecting

maintenance activity information and resource costs. A

105

management approach to utilizing this data would also be

developed.

om~ar n a inding

Analysis of the interview data shows that there are

many similarities and differences between the software

maintenance of Air Force systems and industrial systems.

Air Force software was fundamentally different

characteristics. The average life span of weapon system

software exceeds ten years. Program code normally consists

primarily of assembly languages. Each system has unique

hardware and software configurations. The software is only

one component of a complete system. Air Force systems

require a much higher degree of reliability, thus software

testing is a much more significant activity. This concern

for reliable software has caused the Air Force to take a

formalized and progressive approach to completing software

support. In fact, the Air Force has been performing many

software support functions which are still regarded as

improvement recommendations for industrial systems.

Techniques such as unitary maintenance organizations,

formalized training of personnel, software quality

assurance, configuration management programs, scheduled

implementation of software changes, and usage of software

life cycle prediction models are common place within Air

Force software support efforts.

106

' ' '- - ... I" -I=
'

-- -.
'

--
"

' .- -° , ,, -, . . ± " " . .; . - : - i"-'

The problem areas identified with this study are very

simular to those being experienced by industrial systems.

The emergence of software maintenance as a significant

management and programming effort has left all organizations

lacking adequate personnel experience, and maintenance

standards and procedures. Organizations have also found

that the current state of documentation and code quality is

at a level far below what is required. This research

suggests methods of handling these problem areas.

Thesis Accomplishments S

The purpose of the first thesis objective was to

identify factors which influence the level of maintenance

costs. This was accomplished by linking the level of

maintenance workload with the amount of resources required

to complete the workload. The commitment of resources is

influenced by four major factors: experience of personnel,

system age, documentation and program code quality, and the

level of user enhancements. All other factors were seen as

either constants or as factors not significantly affecting

the maintenance workload or the ability to complete it.

The second thesis objective was to identify the Air

Force policies which cause excess resource commitments to

software maintenance. The Air Force current position on

four major issues were discovered to influence excess

resource expenditures: turnover of personnel,

system/software development methods, software development

107

. . .-L , .. . D ,.... "... .. . ' ' - - -," " ' " 'i - I i ',.ira.

and maintenance standards, and resource management. The Air

Force has made significant progress with controlling

software maintenance activities. The Air Force's policies

surrounding these four issues cause excess amount of

personnel training, duplication of personnel and computer

resources, and time spent completing maintenance tasks. The

policies also cause software to be delivered in a state

which is not condusive for software growth and necessary

maintenance changes.

The third thesis objective was to provide constructive

recommendations for improving the software maintenance

process of Air Force weapon systems. The recommendations

attempted to reduce the effect of the problem areas

identified in the first two thesis objectives. These

recommendations were directed at:

1. developing and retaining software maintenance

experience with the Air Force,

2. planning and managing for system/software life

cycle growth,

3. developing software development standards which

better link software development with software

support,

4. increasing control over maintenance resource

commitments, and

5. furthering study of the software support process

of the Air Force systems.

108

-~~~~~ --------- I__ -- ,

Thesis Cocuso

In the past, improvement suggestions could easily be

disregarded. Weapon systems and their associated software

did not undergo the same degree of change. Indeed, the

dependence on software to complete vital weapon system

functions was less than today. Future commitments to

software are predicted for substantial increases. Increased

commitments will be directed at supporting the growing

number of computer software - dependent Air Force systems

and supporting the ever lengthening life span of deployed

systems. Commitments will be in the form of personnel and

computer resources needed keep the software responsive to

the changing operational system requirements. A

continuation of software support under current Air Force

policies will cause excess consumption of these resources.

Left unattended, this will result in either a massive

resource expenditure or a limited maintenance response

capability. Actions need to be taken in order to avoid

these extreme situations. The recommendations offered in

this thesis provide specific guidance as to where

improvement should be directed.

With the growth of software maintenance as a

significant concern, we are witnessing the emergence of a

new subscience within software engineering: software

maintenance engineering. Currently, this field consists of

the development of management and programming practices

which affect the support of software after its initial

109

S- ..

development. This thesis work has profiled how these

practices apply the the support of Air Force weapon system

software. This work has rediscovered that technology often

progresses faster than management and programmers can react.

The increased utilization of computer software has created a

growing software maintenance workload. Managers are

searching for the best approaches to effectively and

efficiently meeting this workload. The findings from the

study of thirteen Air Force systems has contributed to the

understanding of current approaches and has helped to

identify specific goals for future improvements.

ii

110

Bibliography

1. Aeronautical Systems Division. S Acquistion
Engineering Quide Books, Wright-Patterson AFB OH.

Regulations, Specifications and Standards - ASD-TR-78-6
Reviews and Audits - ASD-TR-78-7
Software Quality Assurance - ASD-TR-78-8
Configuration Management - ASD-TR-79-5024
Computer Program Documentation Requirements - ASD-TR-
79-5025
Statements of Work and Requests for Proposal - ASD-TR-
79-5026

Requirements Analysis and Specificaiton - ASD-TR-79-
5027

Verification, Validation, and Certification - ASD-TR-
79-5028
Microprocessors and Firmware - ASD-TR-80-5021
Software Development Planning and Control - ASD-TR-

80 -5022
Software Testing and Evaluation - ASD-TR-80-5023
Contracting for Software Acquistion - ASD-TR-80-5024
Software Cost Analysis and Estimating - ASD-TR-80-5025
Supportable Airborne Software - ASD-TR-80-5026
Software Development and Support Facilities - ASD-TR-
800-5027

SAE Guidebooks - Application and Use - ASD-TR-80-5028

2. Air Force Test and Evaluation Center. Software OT&E
G l Vol I-IV, Kirtland AFB NM. 1981

3. Alford, M. "A Requirements Engineering Methodology for
Real Time Processing Requirements" in IEEE Trans.
Software Engineering. 60-68. Jan 1977

4. Bachman, C. and Bouvard J. "Architecture Definition
Technique: Its Objectives, Theory, Process, and
Facilities and Practice" in Proc. ACM SIGFIDEF Data
Description Access and Control. 257-305. 1972

5. Balzer, R. .Au o iria ggooramming. Technical Memo,
Information Science Institute, USC, 1972.

6. Belady, L.A. and Lehman, M.M., "The Characteristics
of Large Systems," Research Directions in Sfa
T o edited by P. Wegner, Cambridge, MA, MIT
Press, 1979.

7. Bert, D. "Problem Specification and Algorithmic
Programming" at International Computing Symposium,
1977. 1977

12.2

t . . ,,- - -J --. , ; ' - . . -- ' • . . ,, , ,.-, .._, . . .

8. Black, R.K.E., Katz, R., Gray, M.D., and Curnow, R.P.
"OCS Software Production Data Final Technical Report",
RADC-TR-77-116. March 1977

9. Boehm, Barry M., "Software Engineering: R&D Trends
and Defense Needs," R e in Software
Technlo g . , edited by P. Wegner, Cambridge, MA, MIT
Press, 1979.

10. Boehm et al., Characteristics of ft aj Qaity.
New York: North Holland, 1977.

11. Boehm, B., et at. "Quantitative Evaluation of Software
Quality," Proceedings, 2nd International Conference of
Software Engineering, October 1976.

12. Canning, R.G., "That Maintenance Iceburg" in EL
Analyzer. 1972

13. Dickover, M., McGowan, C., and Ross, D.T. "Software
Design Using SADT" in Proc. Nat. ACM Conf., 125-137,
1977.

14. DeRose, B.C. and Nyman, T.H., "The Software Life
Cycle - A Management and Technological Challenge in
the Department of Defense", JI£E Transactions n
Software Enzjinering, 4:309-320 (July 1978).

15. De Roze, "Defense Systems Software Management Plan",
Office of the Assistant Secretary of Defense (Install-
ations and Logistics), DDC Accession Number AD-A022
558, March 19, 1976.

16. Department of the Air Force. AFR 800-14, Volume I,
"Management of Computer Resources in Systems."
Washington, D.C.: September 1975.

17. . AFR 800-14, Volume II, "Acquisition and Support
Procedures for Computer Resources in Systems."
Washington, D.C.: September 1975.

18. Department of Defense. Directive 5000.1, "Major
System Acquisition." Washington, D.C.: January 1977.

19. __. Directive 5000.29, "Management of Computer
Resources in Major Defense Systems." Washington, D.C.
April 1976.

20. . Instruction 5000.1, "Acquisition of Major
Defense Systems." Washington, D.C.

21. _ . Directive 500.1. Agg..u.itin o1 Mjgr Defense
Sytm. Washington: Government Printing Office,
December 1975.

112

1AM

22. . Directive 5100.40. Resoonsibility X= ±h
Administration of the = Auo Data Pro ing
Prr. ASD(C). Washington: Government Printing
Office, August 1975.

23. . Directive 4155.1. Quality Asuran.c
Washington: Government Printing Office, February 1972.

24. -. Directive 5010.19. Confiauration gjnfljn.
Washington: Government Printing Office, April 1970.

25. - . Instruction 5010.21. Configuration M
Imnlementation G Washington: Government
Printing Office, January 1969.

26. Standard 490. SDecification Pais
Washington: Government Printing Office, October 1968.

27. - . Standard 480A. Configuration Control.
Washington: Government Printing Office, April 1978.

28. -. Standard 483(USAF). Configuration Man meat
Pratie £QL Systems, Eqi~~ml 4*Mnto& Aa
Computer Programs. Washington: Government Printing
Office, December 1970.

29. Donahoo, John D. and Swearington, Dorothy R., "A Review
of Software Maintenance Technology," RADC-TR-80-13,
1980, AD-A082 985/3.

30. Fink, R.C. "Major Issues Involving the Development of
an Effective Management Control System for Software
Maintenance," Proceedings COMPSAC 1977, Chicago,
IL. 533-538. November 1977.

31. Gilb, Software Metrics. Cambridge, MA: Winthrop,
1976.

32. Goldberg, J. "Proceedings of a Symposium on the high
cost of software," held at the Naval Postgraduate
School, Monterey, CA. DDC Accession Number AD-770
121, Sept 17-19, 1973.

33. Goldberg, P. "Automatic Programming" in Lecture Notes
in Computer jc.g. New York: Springer Verlag,
1975.

34. Gustafson, G.G., and Kerr, Roberta J., "Some Practical
Experience with Software Quality Assurance Program,"
Con of ACM, 25:1.4-12, Jan 1982, pp 4-12.

35. Halstead, M.H., Elmet Softwr Sg.nc
Elsevier North Holland, New York, 1977.

113

36. Hamilton, M. and Zeldin, S., "Higher Order Software
A Methodology for Defining Software" in IEEE Trans.
Software Engineering. 9-32, June 1976.

37. Hammer, M., Howe, W.G., Kruskal, V.J., Wladawsky, I.,
"A Very High Level Programming Language for Data
Processing Applications" in Communications of the ACM.
20:11:832-841. November 1977.

38. Hantler, S.L. and King, J.C., "Introduction to Program
Correctness" in Journal of ACM. 331-353. Sep 1976.

39. Huff, S. and Modnick, S., "An Extended Model for a
Systematic Approach to the Design of Complex Systems"
NTIS Report ADA 058565. 1978

40. Johnson, D., Kolberg, C., and Sinnamon, J., "A Pro-
grammable System for Software Configuration Manage-
ment," Proceedings COMPSAC 1978, Chicago, IL, November
1978, pp. 402-407.

41. King, James, "Program Correctness: On Inductive
Assertion Methods" in IEEE Transactions of Software
Engineering. 6:5: 465-479. Sep 1980.

42. Kossiakoff et al., "DOD Weapon Systems Software
Management Study," Applied Phystics Laboratory, The
Johns Hopkins Univ., Laurel, MD, Rep. SR-75-3,
June 1975.

43. Knight, B.M., "Software Quality And Productivity,"
Defene S Mangement R 1(7-8):
54-65 (Autumn 1978).

44. Lehman, Meir M., "Programs, Life Cycles, and Laws
of Software Evolution," Proceedingsa Z=, 9:
1061-1076, (September 1980).

45. Lehman, M.M. and Parr, F.N., "Program Evoluation and
and Its Impact on Software Engineering", P
.Qf thl 2n.d International Conference =o
Engineering. San Francisco, 350-357, October 1976.

46. Lientz, B.P. and Swanson, E. Burton. "Problems in
Application Software Maintenance," Communications

=f th O AM, 11: 763-769, (November 1981).

47. Lientz, B.P., E.B., Swanson, and G.E. Tompkins.
"Characteristics of Application Software Maintenance,"
Communications ±f 2h AM $. 466-411, 1978.

114

7. 4. L

48. Lientz, B.P. and E.B. Swanson. "The Impact of Develop-
ment Productivity Aids on Application Software Main-
tenance," Proceedings, Conference on Application
Development Systems, San Jose, CA, March 9-11, 1980.

49. Lientz, B.P. and E.B. Swanson. "Software Maintenance:
A User/Management Tug-of-War," DzW Management,
26-30, 17 April 1979.

50. Lientz, B.P. and E.B. Swanson. "Problem Factors and
Determinants in Application Software Maintenance,"
Information Systems Working Paper 7-79, Graduate
School of Management, University of California,
Los Angeles, March 1979.

51. Lientz, B.P. and E.B. Swanson. "Discovering Issues
in Application Software Maintenance," Daa Inaaemenl..
16 September 1978.

52. Lientz, B.P. and E.B. Swanson, Sof.tare Maintenance
Managem n , Addison-Wesley Publishing Company,
Phillipines, 1980.

53. Lindhorst, W.M., "Scheduled Maintenance of Applica-
tions Software" in DIAMAUT.QA. 87-89. May 1973.

54. Littlewood, B. (1975), "A Reliability Model for Markov
Structured Software," A Statist., Vol. 24,
pp. 172-177.

55. Littlewood, B. and Verrall, J.L. (1973), "A Bayesian
Reliability Growth Model for Computer Software,"
Ap2lie S Vol. 22, pp. 332-346.

56. Liu, Chester C., "A Look at Software Maintenance,"
D 51-55, Sep 1976.

57. Manley, J., "Findings and Recommendations of the
Joint Logistics Commanders Software Reliability Work
Group (SRWG Report)." Headquarters, Air Force
Systems Command (XRF), Andrews AFB, MD, Final Rep.,
Vol. I and II, Nov 1, 1975.

58. Manna, Z., Ness, S., and Vuillemin. "Inductive
Methods for Proving Properties of Programs" in Proc.
ACM Conference on Proving Assertions about Programs,
SLGPLAN Notices. 7:27-50. Jan 1972.

59. McCabe, T, "A Complexity Measure," Proceedings of the
2nd International Conference on Software Engineering,
IEEE, 1976.

115

,d.

60. McCabe, T. J., and Frederick Stern., "Use of Metrics
to Measure Quality," Conference Proceedings from the
DPMA National Symposium on Effective Methods of EDP
Quality Assurance, Chicago, IL, April 1-3, 1981.

61. McCall, J.A., "An Introduction to Software Quality
Metrics" in S QaJlity tnagment, edited
by Fisher and Cooper. New York: Petrocelli Books,
Inc., 1979.

62. McCall, J. and Walters, G., "The Development of
Metrics for Software R&M," 1978 Proceedings of the
Annual Reliability and Maintainability Symposium
January 1978.

63. McCall, J., Richards, P., Walters, G., "Metrices
for Software Quality Evaluation and Prediction,"
Proceedings of Second Summer Software Engineering
Workshops, NASA/Goddard Space Flight Center, Sep
1977.

64. Mercer, B., "Weapon System Software Acquisition
and Support: A Theory of System Structure and
Behavior" Unpublished Master's Thesis. Air Force
Institute of Technology, Wright-Patterson AFB OH,
March 1982.

65. Miller, E., and Howden, W.E., Tutorial: Software
Testing and Validation Techniques. IEEE Comptr.
Soc., Los Alamitos, CA, 1978.

66. Mills, H.D., "Software Development," R
.x.iQns in Software T.eno . edited by
P. Wegner, Cambridge, MA, MIT Press, 1979.

67. MITRE Corp., "DOD Weapon System Software Acquisition
and Management Study," the MITRE Corp., Bedford, MA,
Rep. MTR-6908, Vol. I and II, June 1975.

68. Murch, W.G., Oprtoa 1g l And vautg Af
Software, National Aerospace Electronics Conference
Proceedings, Dayton, Ohio, pg 1390, 1981.

69. Munson, J.B., "Software Maintainability: A Practical
Concern for Life-Cycle Costs," C=2Wter, 103-109
(November 1981).

70. Myers, G.T., The Art of Software Testing. Wiley New
York, 1979.

71. Myers, G.J., Reliable Software T/u Com.&it
Design, Petrocelli/Charter, 1975.

116<1 116

* _

72. Myers, G.J., Software Reliability: Principles and
.raices, John Wiley & Sons, New York, 1976.

73. Myers, G.J., "Characteristics of Composite Design,"
DATAMATION, September 1973.

74. Myers, W., "The Need for Software Engineering,"
_ u , February 1973.

75. Myers, W., "COMSAC Wrap Up" in ComDuter. 62-70,
January 1979.

76. Musa, J.E. (1975), "A Theory of Software Reliability
and its Application," I&E Trans. =on Sofare
Engineering, Vol. SE-I, No. 3, pp. 312-327.

77. Nyman et al, "Defense System Software R&D Technology
Plan," R&D Technology Panel to the Management Steering
Committee for Embedded Computer Resources, Office of
the Under Secretary of Defense for Research and
Engineering, Department of Defense, Rep., November
1977.

78. Okumoto, K., and Goel, A.L., (1978), "Availability
Analysis of Software Systems Under Imperfect Main-
tenance," RADC-TR-78-li5, Vol, III.

79. Okumoto, K., and Goel, A.L., (1978), "Classical and
Bayesian Inference for the Software Imperfect
Debugging Model," RADC-TR-78-15'. Vol. II.

80. Orr, K., S c S Development , New York,
Yourdon Inc., 1977.

81. Peercy and T. Paschich, "Software Maintainability
Analysis Program User's Manual," BDM/TAC-78-697-TR,
December 1978.

82. Peercy, "Software Maintainability Evaluation Guide-
lines Handbook," BDM/TAC-78-687-TR, December 1978.

83. Peercy, D.E., "A Software Maintenance Evaluation
Methodology," IEEE Trans. Software Engineering,
Vol. SE-7: 343-352, July 1981.

84. Prywes, N.S., Pnueli, A., Shastry, S., "Use of a
Nonprocedural Specification Language and Associated
Program Generator in Software Development" in ACM
Transactions on Programming Languages and Systems,
1:2:196-217, October 1979.

85. Prywes, N.S., "Automatic Generation of Computer
Programs" in Advances in C. Academic
Press: New York. 1977.

117

86. Punter, M., "Programming for Maintenance," DatA
ro.essin&, September-October 1975,

292-294.

87. Putnam, L.H., "General Empirical Solution to the
Macro Software Sizing and Estimating Problem,"
JI=E Transactions o .n2gineriuv.nK ,
July 1978.

88. Putnam, L.H., and Fitzsimmons, A., "Quantative
Management: Software Cost Estimating" presented
at I= Cguter Society COMSAC 77, Chicago,
IL., 129-137. November 1977.

89. Richards, P.K., G. Walters, and J.A. McCall., "Factors
in Software Quality," Three volumes, NTIS, AD-AO49-014,
AD-AO49,015, AD-A049-055., November 1977.

90. Rin, N.A., "Automatic Generation of Data Conversion
Programs Using a Data Description Language," PHD
Dissertation in Computer Science, Vnn of Penn,
Philadelphia, PA, 1976.

91. Schneider, J., "A Preliminary Calibration of the RCA
PRICE-S Software Cost Estimation Model." Unpublished
master's thesis. Air Force Institute of Technology,
Wright-Patterson AFB OH. July 1976. AD A046808.

92. Schick, G.J., and Wolverton, R.W. (1972), "Assessment
of Software Reliability," McDonnell-Douglas
Astronautics . Pape2_r WD 1872.

93. Sharpley, W.K., "Software Maintenance Planning for
Embedded Computer Systems," COMPSAC 77, 520-527,
November 1977.

94. Structured Programming Series, USAF Rome Air Develop-
ment Center, Vols. 1-15, July 1975.
DDC Accession Numbers Follows:

"Programming Language Standards," AD-AO16-771.
"Pre-Compiler Specifications," AD-AOl8-OL6.
"Pre-Compiler Program Documentation," AD-AO13-255.
"Data Structuring," AD-AO15-794.
"Program Support Library Requirements," AD-A003-339.
"Program Support Library Program Specifications,"
AD-A007-7 96.
"Documentation Standards," AD-AO16-414.
"Program Design Study," AD-A016-415.
"Management Data Collection and Reporting,"

AD-AO08-640.
"Chief Programmer Team Operations," AD-A008-861.
"Estimating Software Resource Requirements,"
AD-AO16-416.

118

-j ~

"Training Materials," AD-A026-947.
"Software Tool Impact," AD-AO15-795.
"Validation and Verification," AD-AO16-668.
"Final Report," AD-A020-858.

95. Swanson, E.B., "The Dimensions of Maintenance,"
Procledings. 2jn International Conference =o
Engineering, San Francisco, 13-15 October 1976,
492-497.

96. Swanson, E.B., "On the User-Requisite Variety of Com-
puter Application Software," 11" Transactions gn
Reiabiit, R-28, August 1979, 221-226.

97. Swanson, E.B., "The Dimensions of Maintenance,"
Prrggings 2MA International Conference n Software
.Eflgji erigJ, 492-497, October 1976.

98. Swinson, G.E., and Jones, S.D., "Standard Software
Support Facility Evaluation - Final Report," BDM/TAC
80-693-TR, BDM Corporation Report, Nov 1980.

99. Trainer, W.L., "Software From Satan to Savior",
P.r.eein. NAECON Conferenci, May 1973.

100. Trivedi, A.K., and Shooman, M.L. (1975), "A Many-State
Markov Model for the Estimation and Prediction of
Computer Softwre Performance Parameters," Pr-

igJijs.5. International Conference n Reliable
Software, pp. 208-220.

101. Walston, C.E., and Felix, C.P., "A Method of Pro-
gramming, Measurement and Estimation" in IM
SytesJournal. 16:1:54-73. 1977.

102. Warnier, J., Logical Construction of Programs,
Leiden Germany: Stenfert Kroese, 1974.

103. Watkins, M.L., "A Technique for Testing Command and
Control Software" in Communications of ACM. 25:4:
228-232. April 1982.

104. Winograd, Terry., "Beyond Programming Languages" in
Communications of the ACM, 22:7:391-398, July 1979.

105. Wolverton, R.W., "The Cost of Developing Large-
Scale Software," I&LE Trans. on ,
June 1974.

106. Wong, K., and Engelland, J., "Operational Software
Concept: A New Approach to Avionics Software" in
Proc. AIAA Digital Avionics Systems Conf., 1975.

119

Rpm ~ u~

107. Yau, S.S., and Collofello, J.S., PERFORMANCE RIPPLE
EFFECT ANALYSIS FOR LARGE-SCALE SOFTWARE MAINTENANCE,
RADC-TR-80-55, by Northwestern University, Dept, of
Electrical Engineering and Computer Science for RADC
(ISIS), Griffiss AFB NY, 1980, (NTIS No. AD-A08l-
351).

108. Yau, 5.3., and Collofellow, J.S., "Some Stability
Measures for Softwre Maintenance," Proceedings of
COMPSAC - IEEE Computer Society 3rd International
Computer Software and Appl. Conf., Chicago, IL,
6-8 November 1979.

109. Yourdon, E., .ITechnig~u.. Af .Erog.rA ZtructuLrie .A=l
Dgin Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1975.

120

APPENDIX 1

STRUCTURED INTERVIEW OF
AIR FORCE WEAPON SYSTEM SOFTWARE MAINTENANCE

PURPOSE

The purpose of this study effort is to gather

information about the maintenance of Air Force weapon system

software. This information will be used to:

1. Identify management and programming methods which

are used during the maintenance life cycle.

2. Identify perceived problem/solutions within the

maintenance process.

3. Assess the factors which influence software

maintenance costs.

4. Develop and evaluate a system for gathering

maintenance cost/performance data.

ORGANIZATION

The questions which will be asked during the structured

interview are partitioned into four sections:

Section I: General System Description

Section II: Maintenance Effort - Facts

Section III: Maintenance Effort - Perceptions

Section IV: Maintenance Data Evaluation

121

SECTION I: GENERAL SYSTEM DESCRIPTION

1. Name of person interviewed:

2. Role in maintenance process:

3. Office symbol/address:

4. Name of Air Force weapon system:

5. Basic function of system:

6. Software development information-

a. Cost of entire system:

b. Cost of software:

c. Cost estimation method:

d. Development time period:

e. Expected software lifespan:

f. Who completed software development:

g. Which methods and tools were used in development:

Methods Tools

Structured Programming Automated Flowcharting
Decision Tables Automated Documentation
Chief Programmer Team Data Base Dictionary
Structured Walkthrough Program Design Language

Others (Specify): Others (Specify):

122

W , Ni' I.

h. What programming standards were used during

software development:

i. Describe the hardware that was acquired for system

operations:

j. Describe the hardware that was acquired for system

support and maintenance:

7. Software Product Information -

a. Number of program modules originally delivered:

b. Number of lines of code originally delivered:

c. Programming language used as percent of total -

assembler (identify assembler name
FORTRAN
JOVIAL
OTHER-(Specify)

Total 100%

123

SECTION II: MAINTENANCE EFFORT - FACTS

1. Specify which functions are in, your organization's

definition of software maintenan.:e and software

develiopine nt.

(Specify a M for maintenance and a D for development)

a. Removing defects in which the program logic was

faulty with the result that the program did

something other than what the system and sub-

system specification intended.

b. Tuning the software to make it more efficient

(less machine time. less core).

C. Providing new functions requested by the user.

d. Making modifications as a result of the require-

ment to interface with other systems or other

environments.

e. Others? (Specify)

2. Of the functions (above) that are attributed to main-

tenance, breakdown the percentage each task is to total

software maintenance.

a. %
b. %

d. %
e. %

Total 100%

:12

-A--

3. Who has been responsible for completing software main-

tenance functions:

4. Describe the growth in software by number of lines of

code since deployment.

Number
of

Lines

Time in years

5. Describe the cost of software maintenance support.

Costs

Time in years

6. What is the total number of individuals which are cur-

rently assigned (in whole or part) to software main-

tenance:

PeronelIZ Number Pecntg Tfime

Clerical

Analyst/Programmers

Managers/Staff

Other:

125

7. Describe what percentage of time a manager spends on

the following functions:

a. Readiness management (planning/estimating

future maintenance support requirements)

b. Configuration management (change control)

c. Software Quality assurance

d. Scheduled Maintenance Management

e. Other:

100% Total

8.Describe what percentage of time a programmer spends

on the following functions:

a. Problem analysis and solution design

b. Coding

c. Configuration Control Process Interface

d. Documentation changes

e. Testing and implementation

f. Other functions

100% Total

9. Of the current systems analysts and programmers:

a. How many worked on the initial development of the

software:

b. What is the average number of years of maintenance

experience:

c. What type of training have these personnel

received:

126

Ltf Asineto " rojecto

A project:

10. a. Describe the automated tools which are utilized

for maintenance development:

b. How/why were these selected:

c. What is the cost of development tools:

11. a. Describe the automated tools which are utilzed for

maintenance development testing:

b. How/why were these selected:

c. What is Che cost of testing tools:

127

IN I• ._-

12. a. Describe other computer resources which are

dedicated to software maintenance:

b. How/why were these selected:

c. What is the approximate cost:

13. What further resources are needed?

14. On what basis are the following system resources com-

mitted/allocated to support maintenance functions:

programmers, clerical.personnel, computer time, office

space/supplies, and automated development and test

tools?

15. Indicate which methods are utilized and describe

extent of usage.

Structured programming -

128

_ -. 77 .

P

Structured walkthroughs -

System Librarian -

Design specification (HIPO,PDLSADT) -

Test Data Generators -

Decision Tables -

Flow Charting -

Data Base Dictionary -

16. Describe the standards and procedures of each stage

of the maintenance process below:

Design specification -

Describe format used

Describe Approval procedure

CODING and Testing -

Describe procedures used

Format of documentation

Who reviews the coding/documentation

Describe the testing procedure

129

EL

Describe the approach to integration

Who reviews the integration

17. Before a software change is implemented, how many

different offices/boards must coordinate on the

action?

130

SECTION III: MAINTENANCE EFFORT - PERCEPTIONS

1. Assign a quality score for the current status of each

of the following entities. If none of the available

descriptions accurately describes the entity then give

your own description.

a. DOCUMENTATION OF THE SOFTWARE score:

0 = none
1 = some in line
2 = in line with flowcharts
3 = in line, flowcharts. manuals. design documents

but each are incomplete, poorly organized/
written, and noncurrent

4 = in line, flowcharts, manuals, design documents
but not complete

5 = current/effective/complete documentation
6 = other:

b. PERSONNEL CAPABILITIES score:

0 = insufficient number and quality personnel
1 = insufficient orientation or training to

application
2 = insufficient maintenance programming

experience
3 = insufficient number of committed personnel
4 = qualified, capable programmer workforce
5 = other:

c. MAINTENANCE BUDGET score:

0 = poorly insufficient - not adequately planned
1 = little less than needed
2 = about right but poorly applied
3 = about right but adequately applied
4 = too well padded
5 = other:

d. MANAGEMENT MAINTENANCE CONTROLS score:

0 = poor controls - little positive effect
1 = effect of current controls not known
2 = current controls are effective, but further

controJs are needed
3 = current controls are adequate
4 = current controls are too restrictive
5 = other:

131

e. SOFTWARE QUALITY score:

Range of Score Values 0-5

Low Description: Code is not structured, exhibits poor flow

control (not top down). Code contains

several Khiges. Errors occur fairly

of ten. Code can only be maintained by

those who have been working within for

some time.

Medium Description: The complexity of the programming

language, program logic, or structure

of code limits those who can maintain

High Description: Program modules are coded using standard

AF language and standard language

features. Program design structure is

modular. Structured program constructs

are used throughout. Code demonstrates

high level of reliability.

2. In your judgement. to what extent have the following

been (or are) problems in maintaining the application

system you have described?

132

-I - . V ~~~~'*OEM

None at All

Somewhat Minor

Minor Problem

Somewhat Major

Major Problem

5 4 3 2 1

a. Turnover of maintenance
personnel

b. Quality of application
system documentation

c. Changes made to system
hardware and software

d. User demand for enhance-
ments and extensions to
application systems

e. Skills of maintenance
programming personnel

f. Quality of original pro-
gramming of application
system

g. Number of maintenance
programming personnel
available

h. Competing demands for
maintenance programming
personnel time

i. Lack of user interest
in application system

J. Application system run
failures

k. Lack of user under-
standing or application
system

133

-

None at All

Somewhat Minor

Minor Problem

Somewhat Major

Major Problem

5 4 3 2 1

1. Storage requirements of
application system programs

m. Processing time require-
ments of application
system programs

n. Motivation of main-
tenance programming
personnel

o. Forecasting of main-
tenance programming
personnel requirements

p. Maintenance programming
productivity

q. System hardware and
software reliability

r. Data integrity in
application system

s. Unrealistic user
expectations

t. Adherence to program-
ming standards in main-
tenance

u. Management support of
application system

v. Adequacy of applica-
tion system design
specifications

w. Budgetary pressures

x. Meeting scheduled
committments

134

OTHERS: (please Specify)

y.

z.

3. Rank the top three and bottom three entities as they

affect the level of maintenance support needed (measured in

resources committed to maintenance).

a. Budget available
b. Size of software (lines of code)
c. Code and documentation quality
d. Experience of maintenance Programmers
e. Level of user enhancements
f. History of error occurence
g. System Age
h. Management controls to be used
i. Maintenance tools to be used

4. You have identified these as problem areas:

a.

b.

C.

d.

In what ways could these problems be reduced:

a.

b.

Co

d.

I
ii

--- -' J 4 -- - " -13 5. J

.' • o

5. You have identified these areas which managers spend a

majority of their time:

a.

b.

C.

What could be done to increase the efficiency of these

operations?

a.

b.

C.

6. You have identified these areas which programmers spend

a majority of their time:

a.

b.

What could be done to increase the efficiency of these

operations?

a.

b.

7. What could be done to reduce the current resouce com-

mitment (costs) to software maintenance?

136

SECTION IV: MAINTENANCE DATA EVALUATION

1. Are all user requests for changes to the application

system logged and documented according to an estab-

lished procedures?

If so. what is the procedure

How many requests were recorded during the past twelve

months?

Of these requests. how many have been satisfied by

ch~iges to the application software

2. Are all troubles encountered with the operational

processing of the application system logged andJ

documented?

If so. what is the procedure

How many trouble reports were recorded in the last

twelve months?

3. Are there accounting procedures for accumulating cost

data for each of the following entities as they relate

to software maintenance?

Entity i
Personnel

Clerical
Management
Programmers

Software Tools

Machine Time

Other resources

137

Explain procedures/methods:

4. For those activities for which cost data is collected,

give the cost estimations for the last 12 months.

Entiy La1Costimaio

5. How are the logs and cost data used?

6. Which of the following values would be helpful in

planning and managing the maintenance effort:

a. Determination of what types of maintenance
costs most at yours and other installations.

b. Your total current expenditure for software
maintenance.

c. The source. cause. or reason for current
software maintenance tasks.

d. An evaluation of performance/reliability/
quality of past software maintenance efforts.

138

7. Other comments:

8. Evaluation of interview questions:

~1 139

Appendix 2: Description of Systems Investigated

1. Weapon Sye Name - Perimeter Acquisition Radar
Site (PARCS)

Personnel, on- ILt Steve King HQ SAC/ADS
A-271-3189

Gene Johnson Raytheon
A-330-3207

SDescription- The primary mission of PARCS is to

provide the North American Air Defense Command (NORAD) with

Early Warning Confirmation, Submarine Launched Ballistic

Missile (SLBM) detection, and Attack Characterization (size

of raid and impact point prediction) for Intercontinental

Ballistic Missiles and SLBMs threatening the continental

United States. The secondary mission is to conduct

SPACETRACK operations in support of the NORAD SPADATS

mission (consists of detecting, tracking, identifying, and

cataloging man-made objects in space, to collect SOI and

provide this information to the NORAD Intelligence Center).

This station also supports tracking of new launches,

identification of lost satellites, tracking of break-ups,

and establishment of Tracking Impact Predictions for

decaying satellites. PARCS was originally part of the Army

SAFEGUARD system. The SAFEGUARD system ws declared

operational in October 1975 and terminated in February 1976,

due to public reaction to the cost. A subsequent decision

was made to use the PAR site as a NORAD early warning

sensor. The attack characterization system was operational

140Ii

January 1977 under the Army, and AF personnel arrived on

site in May 1977 for training. The system was transferred

to the Air Force in October 1 977, and a SPACETREAK

capability added in December 1977.

PARCS is currently contractor maintained. Raytheon

supports the system. Teledyne Brown holds the software

support subcontract.

2. We2Ron S t N - SLBM Phased Array Warning
System - PAVE PAWS

Prsonnel Contactd- Capt Charles Taft HQ SAC/ADS
A-271-3189

Capt Art Harriott 3900 CSS
A-368-5227

Syste Description - The SLBM Phased Array Warning

System (PAVE PAWS) consists of four long range, dual-faced

phased array radars (AN/FPS-115), one one the East Coast

(Otis ANGB MA), one in the Southeast CONUS (Robins AFB GA),

one on the West Coast (Beale AFB CA), and one in the

Southwest CONUS (Goodfellow AFB TX). Their mission is to

provide warning and attack characterization of an SLBM

attack against the continental United States, Alaska, and

Canada. Their secondary mission is to provide warning and

attack characterization of an ICBM attack against the above

geographical areas. As collateral sensors, they have a

tertiary mission of SPACETRACK operations providing

NORAD/ADCOM Space Detection and Tracking System (SPADATS)

support in the form of surveillance, tracking, reporting,

and space object identification.

141

PAVE PAWS softtware is currently maintained by 3900

Computer Services Squadron located at Beale Air Force Base,

California.

3. Weapon S y Nsame - COBRA DANE

Personnel C - Lee Severance HQ SAC/AOS
A-271-3189

Wally Moses Raytheon
1-617-358-2721 X-2983

Capt Bill Swiderek

S - COBRA DANE provides early warning

and intelligence profiles of Soviet launches. Radar and

support systems are located at Sheyma AFB, Alaska. System

was developed by Raytheon Systems Development Corporation

and was operational in January 1977. The software is

currently maintained on-site and off-site by Raytheon.

4. Wea.n System m - Ballistic Missile Early Warning
System (BMEWS)

Prsonnel C a - Major Ellis Conley HQ SAC/ADS

A-271-3189

Systeji Description - BMEWS is a long-range high-speed

radar warning system aimed at detecting enemy ballistic

missile att3cks from the north. The knowledge that a

missile attack has been launched enables the National

Command Authorities, the North American Air Defense Command

(NORAD)_ and the Strategic Air Command (SAC) to take steps

to counter the aggression.

Three BMEWS sites were planned and built. Site I, at

Thule, Greenland, was the first to be completed in October

142

Ike WN

1960, followed by Site II at Clear, Alaska, in June 1961,

and in September 1963 Site III at Fylingdales Moor in

Yorkshire, the United Kingdom.

BMEWS has additionally assumed a role in satellite

tracking to supplement its primary missile-warning mission.

It has the capability to track all earth orbiting satellites

within range of its radars. This vital data is also flashed

to NORAD's Space Computational Center in Colorado Springs,

where it is used to update the location of each tracked

satellite.

For nearly 20 years the Aerospace Defense Command

(ADCOM) was responsible for the maintenance and operation

of the BMEWS. In December 1979 in a manpower savings

reorganization plan, the Strategic Air Command assumed

responsibility for the management of BMEWS.

The BMEWS system is currently supported by Federal

Electric Services. Software maintenance functions have been

frozen since 1977.

5. Weapon Syte - AN/FPS-85

erson Contact.ed - Capt Nick Coleman HQ SAC/ADS
A-872-1110

LTC King 20th MWS
A-883-8331

Sy tem Ds jtgn - AN/FPS-85 is a phased array warning

system. Their mission is to provide warning and attack

characterization of SLBM attack against the United States.

AN/FPS-85 also provides space craft detection and cateloging

143

of earth orbiting sattelites. AN/FPS-85 acts as the

alternate SPADOC computational center. Software maintenance

is provided by 20th MWS at Eglin AFB, Florida.

6. Weapon S - AN/FSS-7

P nj - Capt Nick Coleman HQ SAC/ADS
A-872-1110

Systm cr - AN/FSS-7 is a radar warning system

which provides SLBM attack detection. System is located at

McDill AFB. Hardware and software changes to the system are

currently frozen. The system is planned for replacement in

FY 85.

7. S A - Command Center Processing and Display
System - CCPDS

P n C - LTC Kenneth P. Schaebethal
HQ SAC/ADSW A-271-6363

Maj Jim Brenton HQ SAC/ADSW
A-271-4505

Capt Russ Logan HQ SAC/ADSW
A-271-3253

Mr. Gilbert Karr HQ SAC/ADSW
A-271-6363

System Description - CCPDS is dedicated to real time

receipt, processing, and common display of missile, space

and atmospheric tactical warning, and attack assessment

information. Common displays are defined as containing

exactly the same information for all CCPDS users at the same

time. CCPDS willalso support command center unique

functions that do not adversely impact the common functions

of the CCPDS.

144

These requirements are applicable to those current and

future CCPDS installations at the NMCC, ANMCC, NORAD, SAC,

and any other command center that may be designated in the

future. Information derived from the CCPDS is required by

the NCA, Joint Chiefs of Staff, CINCNORAD, and CINCSAC for

their use in response decisionmaking.

Software maintenance is performed by HQ SAC/ADSW at

Offutt AFB, Nebraska.

8. S Ntame - F-111 Digital Computer Complex - F-11D,
F-111F, FB-111A Aircraft

PernniCnt e - Lynn Bassett Sacramento ALC/MME

A-633-2090

John Chow Sacramento ALC/MME
A-633-2090

Bobby Ward General Dynamics
916-920-3663

Gordon Mahlman Rockwell

916-920-1215

Syse Description - The avionics system of the F-111

aircraft is one of the most complex and sophisticated of any

in the Air Force inventory. F-111 system acquisition was

the responsibility of the Air Force Systems Command (AFSC).

Development and production of the aircraft were accomplished

by the General Dynamics Corporation, Fort North Division,

with avionics equipment provided by Rockwell International

Corporation. Conractual engineering support has been

procured from General Dyanmics Corporation since 1971.

Rockwell International Corporation has provided similar

support since 1972.

145

L I

The heart of the F-111 Mark II avionics system is a

Digital Computer Complex (DCC) and an Inertial Navigation

System (INS), both of which employ Operational Flight

Programs (OFPs). The DCC contains the General Navigation

Computer (GNC) and the Weapons Delivery Computer (WDC),

while the INS contains the Navigational Computer Unit (NCU).

The OFPs for these computers form the brain of the F-111

Bombing and Navigation system, each performing its own

function while providing a degree of redundancy in the event

of failur in the other units. Each of the three digital

versions of the F-111 aircraft uses a different set of OFPs

which is unique to its own model. Each aircraft's OFPs

undergo an eightenn month block change cycle to provide

software update and changes dictated by the needs of the

users and by requirements for opera¢ional enhancements and

correction of deficiencies. Initiation of each aircraft's

block change cycle is staggered at six months interval to

efficiently utilize manpower and facilities resources.

Software maintenance is currently performed by General

Dynamics and Rockwell at the F-111 Avionics Integration

Support Facility (AISF) at McClellan AFB, California.

9. Stem A= - Programmable Indicator Data Processor
(PIDP)

Personnel. C - Dee Ann Manning AFCCPC/
A-735-3281

System D - PIDP is a Class V modification to

fixed radar facilities using the AN/TPX-42A Air Traffic

146

hi1 1 ' " '

Control Radar Beacon System. The object of the PIDP program

is to replace the existing hardwired indicator data

processor, and to upgrade current display capabilities of

the AN/TPX-42A. The replacement is scheduled for FY 82.

Air Force Communications Command is the primary user and

responsible for maintaining the system software. The

software is maintained at the AF Communications Computer

Programming Center (CCPC) at Tinker AFB, Oklahoma.

10. S Name- Air Force Satellite Communications
(AFSATCOM)

Pesone C - ILt Tony Vander Heyden AFCCPC/

ILt Anna Elliott AFCCPC/

A-735-5901

S-.w Dsrti.±&iJtion - The Air Force Satellite

Communications System will provide a satellite communication

capability to satisfy high priority Air Force requirements

for operational command and control of forces on a world-

wide basis. Some of the communication functions satisified

by AFSATCOM include Emergency Action Message (EAM)

dissemination, Force Direction, Force Report Back, and

CINCNET interconnectivity. AFSATCOM software is maintained

by AFCCPC at Tinker AFB, Oklahoma.

11. S Na - Improved Emergency Message Automatic
Transmission System (IEMATS)

Personnel C - ILt Steve Gilbert AFCCPC/

147

'L , I " M

APPENDIX 3

DATA ANALYSIS METHODS

The data which was gathered through the structured

interviews was analyzed using a few fundemantal statistical

approaches. The approaches are outlined below with a single

problem worked for each.

Problem L. A021sis gf F-±ntagg Data. A series of

interview questions were structured to solicit a response

where an entity was described by categorizing the percentage

of its parts. An example of this type of question is shown

below:

Section II Question 10 - Describe what percentage of

time a programmer spends on the following functions:

a. Problem Analysis and Solution Design

b. Coding

c. Configuration Control Process Interace

d. Documentation Changes

e. Testing and Implementation

f. Other Functions

The objective of this type of question is to describe the

current maintenance environment by establishing common

relationships between the systems being investigated. This

type of question was analyzed using the following approach:

Step 1: Percentage responses were first converted to

rankings. This was done by assigning a ranking

of 1 to the response which had the largest

148

ke -r W 'So

percentage, a 2 to the second largest, etc. The

responses to

Section II Question 10 were translated as shown in the table

translation shown below:

n Given n f L

System
Number A B C D E F

1 30 10 25 25 10

2 30 10 25 25 10

3 40 10 25 8 17

4 25 15 22 23 15

5 18 12 10 20 40 *

6 18 12 10 20 40 *

7 18 12 10 20 40 *

8 45 15 15 10 15

9 40 15 15 10 20

10 30 10 12 15 20

11 32 18 5 20 25

Mean - 29.6 12.6 15.9 17.8 22.9

Percentage
Summary

30 12 16 18 23

149

A B C D E F Total

System

Number

1 1 4.5 2.5 2.5 4.5 15

2 1 4.5 2.5 2.5 4.5 15

3 1 4 2 5 3 15

4 1 4.5 3 2 4.5 15

5 3 4 5 2 1 15

6 3 4 5 2 1 15

7 3 4 5 2 1 15

8 1 3 3 5 3 15

9 1 3.5 3.5 5 2 15

10 1 5 4 3 2 15

11 1 4 5 3 2 15

Sum Rj 17 45 40.5 34 28.5 165

Mean and Sum Rj values are computed as these matrixes are

developed.

Step 2: The null hypothesis and alternative hypothesis of

interest is set as:

H: No association between rankings

A: Association between rankings

The Kendall coefficient of concordance is used to test the

null hypothesis that ranking responses are independent. The

Kendall coefficient is measured in the following manner:

150

__ _ _ _ _ _ _ _ _ _ _ _ J . -_= ? .< .- .- .. . , - .,- ,- -L -
q

RN. ,,_ ..

Kendall coefficient (w) =
n

12 J= R.2 - 3k2 n (n.1) 2

n k2 (n 2 -1)

where k = number of row responses

n = number of column categories

RJ = Sum of rank values per column

Thus, this problem can be solved with k 11, n = 5 and the

previously calculated Rj values.

w __ R j2 = 172 + 452 + 40.52 + 342 + 28.52 5922.5

J=1

w = 12(59 2,51. 1 121) Q iL~j
5 (121) (24)

= .3946

If there is perfect agreement in ranking in all systems,

then response A receives the same rank for all systems,

response B receives the same rank, etc... and the resulting

value of w is 1.0. If there is perfect disagreement amoung

rankings, then the values of each Rj will be very close to

equal and the resulting value of w will be close to 0.0. If

the value of w is between 0.0 and 1.0 its significance must

be further evaluated.

151

!7'

If the value of W is small then the ranking was independent.

If W is computed to be large than the null hypothesis must

be rejected in favor of the alternative hypothesis: The

next step is to evaluate the resulting W value by computing

the following Q statistic:

Q = k(n-1)W

and finding the associated P - value using the CHI SQUARE

Distribution with n-1 degrees of freedom.

The evaluation of the Kendall coefficient in this

manner is known as the Friedman Test.

Thus Q = 11(4) (.3946) = 17.3624

using CHI SQUARE with 4 degrees of freedom, P < .01. The

data does not support the null hypothesis of independence,

and there for indicates a relationship between the rankings

of each system.

Step 3: If the alternative hypothesis was favored then the

percentage responses were averaged; a pie chart summary of

findings would display the mean responses.

Prlgjn 2. hUi JAaAr Contingency Table Test. A second

type of problem was structured in order to identify a set of

entities which were related. Section III, Questoin 3 is a

sample of this type of inquiry:

Rank the top three and bottom three entities as they

affect the level of software maintenance workload.

152

a. Budget available

b. Size of Software (lines of code)

c. Code and documentation quality

d. Experience of maintenance Programmers

e. Level of user enhancements

f. History of error occurence

g. System Age

h. Management controls to be used

i. Maintenance-tools to be used

The matrix of responses to this question is shown below.

(The top three choices are labeled 1 , 2, 3; the bottom are

labeled 9, 8, 7).

System

Number A B C D E F G H I

1 3 19 2 8 7

2 8 9 2 3 1 7

3 8 1 3 2 9 7

4I 8 2 1 3 9 7

5 3 19 2 8 7

6 7 2 9 3 1 8

7 8 12 3 9 7

8 17 2 3 9 8

9 3 7 8 1 9 2I10 8 7 9 1 2 3

11 3 2 1 9 8 7

153

The objective of this type of question is to identify those

factors which relate/do not relate to some common entity

(maintenance workload). This type of problem was anlayzed

using this approach:

Step 1: Rankings responses were grouped by level

as shown below:

A B C D E F G H I

Top 3 3 5 6 5 34 5 1 1

Middle 3 34 5 3 6 2 4 4 2

Bottom 5)4 1 2 0 5 2 6 8

Step 2: The expected value for each cell of the table is

11/3. The significance of responses are then

evaluated using the Chi-Square contingency table.

Total number of responses = N = 99
Number of responses in each column = C =11
Number of responses in each row = nj = 33
Number of rows = ROW = 3
Number of columns = COL = 9

Each cell is evaluated as follows:

(Observed~ Vage Expected Lf.~
Expected Value

This value for each cell is calculated and sumed.

T :.4 + .4 + 1.3 + 5.34 + 1.3 + .1 + 1.3 + 5.34 + 5.4 +
.4.4+ .1 +~ 1.3 + .1 + 5.4 +1.3 + .1 + .1 + 1.3 +

1.3 + .1 + 5.4 + 1.3 + 13.4 +i 1.3 +i 1.3 + 5.4 + 13.4

T :734.1

A critical region of approximate size :.05 corresponds

to values of T greater than 26,a3 obtained from the Chi

-' C 154

Square distribution with (ROW-l)(CUL-I)=(3-1)(9-1)=(2)(8)=l6

degrees of freedom. Since 7LL1. is greater than 26.3, the

null hypothesis is rejected. The conclusion is that

responses are distributed differently amoung each grouping

(Top, Middle, Bottom).

Step 3: Significant distribution differences are evaluated

by observation. Significant factors are

identified as:

C - Code and Documentation Quality
D - Experience of maintenance programmers
E - Level of user enhancements
G - System age

The degree to which each of these factors affects the level

of software maintenance workload is investigated through

other interview questions.

Proble.m 3 . Rn Je o Descritive Values. A series of

interview questions were structured to describe the current

state of maintenance activities by assigning relative

descriptive scoring. An example of this type of question is

shown below:

Section III, Question 2. In your judgement, to what

extent have the following been (or are) problems in

maintaining the application system you have described?

a. Turnover of maintenance personnel -

b. Quality of application system documentation-

c. Changes made to system hardware and software -

155

d. etc.

The level of the problem was rated on a 1 to 5 scale where:

5 = Major problem

14 =Somewhat major problem

3 = Minor problem

2 =Somewhat minor problem

1 =No problem

These problems were analyzed using the following approach:

Step 1: The minimum, maximum and median response values

were calculated for each problem area.

Step 2: The range of values were displayed in the following

manner:
Response Values

5 14 3 2 1

a. Turnover of maintenance-
personnel

b. Quality of application MM
system documentation

c. Changes made to System
hardware and software

d.-

Step 3: In this case, the most significant problem areas

are indicated by median values of 3 or larger.

The establishment of this threshold is supported

by other interview questions.

156

APPENDIX 4

APPLICATION OF STATISTICAL METHODS TO STRUCTURED

INTERVIEW QUESTIONS

This appendix details the responses to interview

questions which were statistically evaluated. The responses

to other questions are summarized and discussed in Chapter L

and Appendix 2. Each question summarized in this appendix

includes an itemization of system responses, an indication

of which statistical analysis method was used and

intermediate and final analysis results. Thirteen systems

were evaluated.

SytmNumber Sse

1 AFSATCOM
2 IEMATS
3 PIDP
'4 FB-111A
5 F-111D
6 F-I11F
7 PARCS
8 PAVE PAWS
9 COBRA DANE

10 FPS-85
11 CCPDS
12 BMEWS
13 FSS-7

System 12 and 13 have been frozen and software maintenance

functions are no longer active. For this reason, many of

the questions will not have a response for these two

systems. Appendix 3 details the application of three major

statistical methods:

157j

At . .

Statistical Method 1: Kendalls coefficient of concor-

dance

Statistical Method 2: Chi Square Contingency Table

Statistical Method 3: Mean/Median Summary

OuAD.tion Respnse Summary;

1. Sectlon -Quesioin .

Question Response
(Percentage)

System Number A 2 L D E

1 25 15 30 25 5
2 10 25 55 10
3 30 15 45 5 5
4 25 30 40 5
5 25 30 40 5
6 25 30 40 5
7 30 25 30 15
8 30 25 45 10
9 15 25 35 15 10

10 25 10 40 10 5
11 25 15 40 10 10

Statistical Method #1 Used.

Kendalls Coefficient - .4132
Q statistic = 18.1808
Chi Square test showed adoption of alternative hypothesis
(p>.01).

Mean values for responses is shown below:

A - 28
B - 17
C - 39
D - 11
S-5

158

- ' .r'a I

2. Sec ,,T, U_. Question f.

Maintenance Manning
(By Personnel Type)

Programmer

1 1 13 2 -

2 1 4 1 -

3 2 16 2 2
4-
5 5 21 3
6
7 4 55 4 -

8 2 19 6
9 1 8 2 1

10 4 42 4 -
11 3 38 5 3

These numbers were summarized in accordance with statistical

method number 3. Results are discussed in Chapter 4.

3. Section UI-Question 7
Manager Tasks

(By Percentage of Time)

.ytem Number A B D

1 60 5 0 35 0
2 30 15 15 0 40
3
4 20 60 0 20 0

9. 7
8 40 20 0 10 30
9 10 30 35 20 5

10 0 65 25 10 0
11 40 20 25 15 0

Statistical Method Number 1 Used.
Kendalls Coefficient = .129
Q Statistic= 5.676
Chi Square test showed adoption of null hypothesis

(p>.l).

Mean values were not deemed meaningful.

159

..-

4. Sgctlon QJ uestig

Programmer Tasks
(By Percentage of Time)

Sysem Number A 2 Q D L

1 30 10 25 25 10
2 30 10 25 25 10
3 40 10 25 8 17
4 18 12 10 20 40
5 18 12 10 20 40
6 18 12 10 20 40
7 25 15 22 23 15
8 45 15 15 10 15
9 40 15 15 10 20

10 30 10 12 15 20
11 32 18 5 20 25

Problem solved in problem 1 of Appendix 3.

5. Section Question 1A-1E

Ratngo f Mitnac actors (A-E)

Syte NumberAB D

1 4 4 - 3 2
2 4.7 4 3 3 4
3 5 4 4 4 3.2
4 4 4 - 3 2

4 4 - 3 2
6 4 4 - 3 2
7 3.2 3 3 3 3

4 4 3 3 4
9 4 4 3 3 3.5

10 4 2.5 3 3 3.5
11 5 6* 3 3 4.5

Problem solved using method number 3.

Median/Mean Values are shown below:

A- 4
B- 4
C-3
D-3
E -3.4

160

''A~

6. Section/ -Questioi

SytmNumber:

SlAra - . £ .3. 4 5- 1 7
a. 4 3 3 1 1 1 4 3 3 3 4b. 4 1 1 2 2 2 4 3 3 5 2a. 1 1 2 1 1 1 1 2 2 3 2d. 1 5 2 2 2 2 4 3 2 2 3e. 4 1 3 1 1 1 - 1 2 3 2C. 5 1 5 3 3 3 4 2 3 3 2g. 4 3 2 4 4 4 - 2 3 1 3h. 4 3 3 1 1 1 2 1 2 - .1. 1 1 1 1 1 1 - 1 1 1 3
J. 5 1 3 1 1 1 1 1 1 3 2k. 1 3 4 2 2 2 3 2 2 3 2. 1 1 2 4 4 4 5 2 2 1 2m. 3 2 4 2 2 2 1 1 2 1 3n. 2 1 1 3 3 3 - 3 2 - 3o. 3 2 3 2 2 2 1 1 1 2 4P. 1 1 3 2 2 2 - 2 2 2 1q. 5 1 3 2 2 2 1 2 1 2 3r. 1 1 3 2 2 2 1 2 2 1 2s. 1 3 2 2 2 2 1 3 1 1 2t. 1 1 2 2 2 2 1 3 3 1 3U. 1 4 3 2 2 2 2 1 2 1 2v. 4 1 2 4 4 4 2 1 3 1 2
W. 1 1 - 4 4 4 5 2 1 2 4x. 1 5 - 3 3 3 1 3 1 1 4

Response values are summarized in Table 4

of Chapter 4.

Responses (Y/N)

1 N N Y y
2 N Y N Y3 N Y y y4 N Y N Y
5 Y Y N N6 N Y N Y7 N N N Y8 y y y y9 N N Y N10 N N Y y

11 N Y N Y

161

IOw owl

......

This question was evaluated using method number 1. There ws
no correlation of responses between systems.

Kendalls coefficient - .103
Q statistic - 4.532.

The null hypothesis of independent responses was accepted
with (p>.l).

Summary data was not calculated.

162

James Patrick Joyce was born 29 May 1955 at Colorado

Springs, Colorado. He received the degree of Bachelor of

Science in Computer Science from Oregon State University in

June 1977. Upon graduation, he received his commission

through Air Force ROTC. From October 1977 to May 1981, he

was assigned to the Tactical Fighter Weapon Center (TFWC) at

Nellis AFB, Nevada. During this assignment, Capt Joyce

served as Computer Systems Support Officer and as Chief of

the Data Processing Plans and Requirements Branch. In June

1981, he entered the Air Force Institute of Technology.

Capt Joyce will receive the degree of Masters of Science in

Information Systems from AFIT in December 1982.

Permanent Address: 1305 Stella Drive
Colorado Springs Colorado
80908

163

SECURITY CLASSIFICATION OF THIr
0

4GE (W,-t IhAta tEraered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFC E COMPLETING FORM
1. REPORT NLMIER ' 2TAEiIBN NO. 3. PECI 1rIFT'" CATAOG NUMBER

APITIGCS/MAI82D-5 y
4. TITLE (and Subtitle) S. T%'FE OF R.POT & PERIOD COVERED

A Study of the Software maintenance Process Master's Thesis
of Air Force Weapon Systems 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) . 6. CON'tRACT OR GRANT NUMBER(s)

James P. Joyce

Capt USAF_
9. PERFORMING ORGANIZATION NAME AND AODRESS 10 P0GcPAM F.LEMENT. PROJECT. TA'SK

AP.A A WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433 1

I . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
t Dee 1982Air Force Test and Evaluation Center (AFTEC) 1. NUMBER Dc PAGES

V*1 a .162
14. MONITORING AGE N y t-"&- " different from Controlling Oflice) 15. SECURITY CLASS. (of this report)

ISo. DECLASSIFICATION,DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Aproved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

3.S)P
1

Wfor puji eAe' ... a 1%;

r Is. PP E NTAR Y J ,Z .. .1 ,
r 0, ..
Aj , j provea or bl el - __W-' 190-17

tee ln.wlo cl Ieckrnoi-gy IATC Ck M C.i3R ___jt- US~AF
.pau.ee Afa Ou 4bu Diictewq _-of Public Affairs 4, JA N_1

'9. KEY WORDS (Continue an rove aide It necessary and Identify by block number)

SOFTWARE MAINTENANCE SOFTWAPE MANAGEMENT
AIR FORCE WEAPON SYSTEM SOFTWARE SOFTWARE ACQUISITION

" !SOFTWARE MAINTAINABILITY SOFTWARE SUPPORT

210. ABSTRACT (Continue on revere. aids If necessary and identify by block number)

'The increasing cost of software maintenance is becoming a
critical issue. This master's thesis profiles Air Force software

maintenance activities and provides recomendations for improving

mnagement and prograning efforts. The software maintenance

D I 1473 EDITION OF I NOV68 IS OSOLTEU

SECURITY CLAS-IFICATIw)N O tiS PAGE fIhen Pars Fntere'l

I

-'C--.-

7
o_ ..W . , .

SECURITY CLASSIFICATION OF THIS PAGE("on Data Enerted)

activities of thirteen Air Force weapon systems were investigated

through structured interviews of key management and programmer

personnel. Analysis of interview responses resulted in the

identification of four factors which effect the level of mainten-

ance effort: system age, personnel experience, documentation

and code quality, and level of uner enhancements. Interview res-

popses also identified three major management policy issues

which cause th- Air Force to make excess resource commitments to

software maintenance functions:

1) Personnel experience;
2) Software development and life cycle planning, and
3) Software development and maintenance'standards.

Management policy recommendations were developed to reduce the

impact of these conditions on Air Force weapon system software

maintenance activities.

SECURITY CLASSIFICATION OF THIS PAGEW71en Does Entered)

II

J

V

44

